Lightweight infrared and visible image fusion network with edge-guided dual attention

人工智能 计算机科学 计算机视觉 图像融合 特征提取 特征(语言学) 模式识别(心理学) 分割 图像分割 融合 图像渐变 图像纹理 图像(数学) 哲学 语言学
作者
Xingyue Zou,Jiqiang Tang,Luqi Yang,Zhenhang Zhu
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:32 (06) 被引量:2
标识
DOI:10.1117/1.jei.32.6.063014
摘要

Existing methods for fusing infrared and visible images prioritize the fusion effect at the expense of the model size and inevitably tend to be more oriented toward infrared images during fusion, which results in fused images that can lack the texture detail information of visible images. Therefore, a new feature gradient attention block is designed in our model to extract the texture detail of the image, in which the module extracts the gradient information of the original image while extracting features, then uses depthwise separable convolution to optimize and enhance the information with rich edge features. To preserve the original image information, we also use short links to reference previous features. Since the important features are strengthened in the feature extraction stage, we design an adaptive weight energy attention network based on the energy fusion strategy in the fusion stage to further preserve the thermal radiation area of the infrared image and the spatial details of the visible image. The proposed method is experimentally verified on the public visible-infrared paired dataset for low-light vision and the TNO dataset, and six objective evaluation indicators are used to prove that our model is better to the existing fusion algorithms. In addition, we further verify the effectiveness of the proposed method for high-level vision task models by object detection and semantic segmentation models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bzg发布了新的文献求助10
刚刚
Lucas应助科研通管家采纳,获得30
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
如梦如画完成签到 ,获得积分10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
accepted应助科研通管家采纳,获得10
2秒前
accepted应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
wanci应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
ylw发布了新的文献求助10
2秒前
5High_0完成签到 ,获得积分10
3秒前
上官若男应助Zzz采纳,获得10
3秒前
bzg完成签到,获得积分20
6秒前
甜蜜的楷瑞应助王手采纳,获得10
7秒前
糖发人发布了新的文献求助10
7秒前
090完成签到,获得积分10
7秒前
chen发布了新的文献求助10
7秒前
Clyde完成签到,获得积分10
9秒前
9秒前
和谐续完成签到 ,获得积分10
10秒前
大个应助李皓婷采纳,获得10
10秒前
12秒前
chen完成签到,获得积分10
12秒前
Hello应助ylw采纳,获得10
12秒前
13秒前
ChemistryZyh发布了新的文献求助10
13秒前
wensir发布了新的文献求助10
13秒前
端庄千琴完成签到,获得积分10
13秒前
heavennew完成签到,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048