Machine Learning-Assisted Near- and Mid-Infrared spectroscopy for rapid discrimination of wild and farmed Mediterranean mussels (Mytilus galloprovincialis)

贻贝 贻贝 水产养殖 渔业 生物监测 地中海气候 地中海 环境科学 生物 生态学
作者
Hüseyin Ayvaz,Riza Temizkan,Burcu Kaya,Merve Salman,Ahmed Menevşeoğlu,Zayde Ayvaz,Nurhan Güneş,Muhammed Ali Doğan,Mustafa Mortaş
出处
期刊:Microchemical Journal [Elsevier BV]
卷期号:196: 109669-109669 被引量:5
标识
DOI:10.1016/j.microc.2023.109669
摘要

The objective of this study was to investigate the ability to discriminate between wild and farmed Mediterranean mussels (Mytilus galloprovincialis) using machine learning-assisted near-infrared (NIR) and mid-infrared (MIR) spectroscopy. Mussels are of significant global importance in aquaculture due to their nutritional characteristics, encompassing a rich source of protein, essential fatty acids, various vitamins, and abundant minerals. Additionally, their ease of farming adds to their value as a desirable aquaculture species. The mussels' capacity to reflect environmental quality attributes makes them valuable as biomonitoring agents. However, differences in nutritional composition may arise between wild mussels harvested from natural marine hard-bottoms and those farmed in open artificial systems in the sea. In this study aimed at distinguishing between the two types of mussels, the classification models were created, and the most accurate results were achieved using the FT-MIR spectral data extracted from the interior part of the mussels, while the performance of FT-MIR data obtained from the mussels' shells was slightly lower, with the accuracy of 92% and R2 of 0.87. Still, the accuracies of all the classification models were over 90%. The Ensemble model, trained using FT-MIR spectra from the interior part of the mussel, achieved an accuracy of 98.4%, surpassing the performance of other variable sets. In both NIR and MIR models, spectra from the mussels' interior provide better discrimination than spectra from the outer shell.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12321234完成签到,获得积分10
1秒前
jiujiujiuo完成签到,获得积分10
1秒前
2秒前
尽舜尧完成签到,获得积分10
2秒前
xxliu完成签到,获得积分10
2秒前
所所应助火星上的大开采纳,获得10
3秒前
李健应助ZZZZ采纳,获得10
3秒前
天天快乐应助小丫头子采纳,获得10
4秒前
合适怡完成签到,获得积分10
6秒前
7秒前
韦颖发布了新的文献求助10
7秒前
Jasper应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
夏硕士应助科研通管家采纳,获得10
8秒前
mg应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
小白应助科研通管家采纳,获得10
9秒前
mg应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
青云瑞晶完成签到,获得积分10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
haix应助科研通管家采纳,获得20
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
彳亍1117应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
9秒前
mg应助科研通管家采纳,获得10
9秒前
9秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842096
求助须知:如何正确求助?哪些是违规求助? 3384295
关于积分的说明 10533721
捐赠科研通 3104627
什么是DOI,文献DOI怎么找? 1709760
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773993