Machine Learning-Assisted Near- and Mid-Infrared spectroscopy for rapid discrimination of wild and farmed Mediterranean mussels (Mytilus galloprovincialis)

贻贝 贻贝 水产养殖 渔业 生物监测 地中海气候 地中海 环境科学 生物 生态学
作者
Hüseyin Ayvaz,Riza Temizkan,Burcu Kaya,Merve Salman,Ahmed Menevşeoğlu,Zayde Ayvaz,Nurhan Güneş,Muhammed Ali Doğan,Mustafa Mortaş
出处
期刊:Microchemical Journal [Elsevier]
卷期号:196: 109669-109669 被引量:5
标识
DOI:10.1016/j.microc.2023.109669
摘要

The objective of this study was to investigate the ability to discriminate between wild and farmed Mediterranean mussels (Mytilus galloprovincialis) using machine learning-assisted near-infrared (NIR) and mid-infrared (MIR) spectroscopy. Mussels are of significant global importance in aquaculture due to their nutritional characteristics, encompassing a rich source of protein, essential fatty acids, various vitamins, and abundant minerals. Additionally, their ease of farming adds to their value as a desirable aquaculture species. The mussels' capacity to reflect environmental quality attributes makes them valuable as biomonitoring agents. However, differences in nutritional composition may arise between wild mussels harvested from natural marine hard-bottoms and those farmed in open artificial systems in the sea. In this study aimed at distinguishing between the two types of mussels, the classification models were created, and the most accurate results were achieved using the FT-MIR spectral data extracted from the interior part of the mussels, while the performance of FT-MIR data obtained from the mussels' shells was slightly lower, with the accuracy of 92% and R2 of 0.87. Still, the accuracies of all the classification models were over 90%. The Ensemble model, trained using FT-MIR spectra from the interior part of the mussel, achieved an accuracy of 98.4%, surpassing the performance of other variable sets. In both NIR and MIR models, spectra from the mussels' interior provide better discrimination than spectra from the outer shell.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈cc完成签到,获得积分20
1秒前
小金星星完成签到 ,获得积分10
1秒前
1秒前
2秒前
tuanheqi应助124332采纳,获得50
3秒前
3秒前
breath发布了新的文献求助10
4秒前
俏皮的沧海完成签到,获得积分10
5秒前
点凌蝶完成签到,获得积分10
5秒前
0617发布了新的文献求助10
8秒前
12秒前
Xxxxr发布了新的文献求助20
16秒前
大个应助0617采纳,获得10
16秒前
Lan完成签到 ,获得积分10
18秒前
18秒前
科研buff完成签到,获得积分10
18秒前
英俊的铭应助气泡水采纳,获得10
19秒前
格非发布了新的文献求助10
19秒前
summy发布了新的文献求助10
19秒前
小小毅1989完成签到 ,获得积分10
21秒前
22秒前
22秒前
Skyeisland完成签到,获得积分10
25秒前
童0731发布了新的文献求助10
26秒前
27秒前
younger004完成签到,获得积分20
27秒前
29秒前
30秒前
开心的鬼神完成签到,获得积分10
31秒前
上进生完成签到,获得积分10
36秒前
科研通AI2S应助124332采纳,获得10
36秒前
37秒前
hmfyl发布了新的文献求助10
37秒前
优美的世开完成签到,获得积分20
38秒前
Elena发布了新的文献求助10
40秒前
童0731完成签到,获得积分10
41秒前
41秒前
深情安青应助科研小白菜采纳,获得10
42秒前
vivi完成签到,获得积分10
44秒前
46秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308531
求助须知:如何正确求助?哪些是违规求助? 2941839
关于积分的说明 8506196
捐赠科研通 2616831
什么是DOI,文献DOI怎么找? 1429824
科研通“疑难数据库(出版商)”最低求助积分说明 663928
邀请新用户注册赠送积分活动 649040