亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

QLDTI: A Novel Reinforcement Learning-based Prediction Model for Drug-Target Interaction

水准点(测量) 计算机科学 强化学习 人工智能 相似性(几何) 机器学习 药物靶点 预测建模 数据挖掘 大地测量学 医学 药理学 图像(数学) 地理
作者
Jie Gao,Qiming Fu,Jiayi Sun,Yunzhe Wang,Yun Xia,You Lu,Hongjie Wu,Jianping Chen
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:18
标识
DOI:10.2174/0115748936264731230928112936
摘要

Background: Predicting drug-target interaction (DTI) plays a crucial role in drug research and development. More and more researchers pay attention to the problem of developing more powerful prediction methods. Traditional DTI prediction methods are basically realized by biochemical experiments, which are time-consuming, risky, and costly. Nowadays, DTI prediction is often solved by using a single information source and a single model, or by combining some models, but the prediction results are still not accurate enough. Objective: The study aimed to utilize existing data and machine learning models to integrate heterogeneous data sources and different models, further improving the accuracy of DTI prediction. Methods: This paper has proposed a novel prediction method based on reinforcement learning, called QLDTI (predicting drug-target interaction based on Q-learning), which can be mainly divided into two parts: data fusion and model fusion. Firstly, it fuses the drug and target similarity matrices calculated by different calculation methods through Q-learning. Secondly, the new similarity matrix is inputted into five models, NRLMF, CMF, BLM-NII, NetLapRLS, and WNN-GIP, for further training. Then, all sub-model weights are continuously optimized again by Q-learning, which can be used to linearly weight all sub-model prediction results to output the final prediction result. Results: QLDTI achieved AUC accuracy of 99.04%, 99.12%, 98.28%, and 98.35% on E, NR, IC, and GPCR datasets, respectively. Compared to the existing five models NRLMF, CMF, BLM-NII, NetLapRLS, and WNN-GIP, the QLDTI method has achieved better results on four benchmark datasets of E, NR, IC, and GPCR. Conclusion: Data fusion and model fusion have been proven effective for DTI prediction, further improving the prediction accuracy of DTI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
守墓人完成签到 ,获得积分10
5秒前
7秒前
27秒前
ifast完成签到 ,获得积分10
34秒前
科研通AI2S应助薄饼哥丶采纳,获得10
40秒前
caca完成签到,获得积分10
1分钟前
2分钟前
Aniya_Shine完成签到 ,获得积分10
2分钟前
haobuweiju完成签到 ,获得积分10
3分钟前
bingo发布了新的文献求助10
3分钟前
大模型应助爱听歌的剑鬼采纳,获得30
3分钟前
文静的大象完成签到 ,获得积分10
3分钟前
科研通AI2S应助Fatalite采纳,获得10
3分钟前
3分钟前
巴巴bow完成签到 ,获得积分10
3分钟前
薄饼哥丶发布了新的文献求助30
3分钟前
norberta发布了新的文献求助10
4分钟前
薄饼哥丶完成签到,获得积分10
4分钟前
张可完成签到 ,获得积分10
4分钟前
4分钟前
菜菜完成签到,获得积分10
4分钟前
5分钟前
听听发布了新的文献求助10
5分钟前
咎不可完成签到,获得积分10
5分钟前
听听完成签到,获得积分10
5分钟前
斯文败类应助科研通管家采纳,获得10
5分钟前
独特的友琴完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
星辰大海应助rinnki采纳,获得30
6分钟前
7分钟前
7分钟前
7分钟前
汉堡包应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
既然寄了,那就开摆完成签到 ,获得积分10
7分钟前
7分钟前
汤万天完成签到,获得积分10
8分钟前
千里快哉风完成签到 ,获得积分10
8分钟前
bingo发布了新的文献求助10
8分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248759
求助须知:如何正确求助?哪些是违规求助? 2892214
关于积分的说明 8270172
捐赠科研通 2560386
什么是DOI,文献DOI怎么找? 1388980
科研通“疑难数据库(出版商)”最低求助积分说明 650936
邀请新用户注册赠送积分活动 627850