生物
清脆的
基因
遗传学
基因组编辑
效应器
正向遗传学
基因敲除
突变体
基因靶向
同源重组
计算生物学
Cas9
细胞生物学
作者
Vijai Bhadauria,Tongling Han,Guangjun Li,Wendi Ma,Manyu Zhang,Jun Yang,Wensheng Zhao,You‐Liang Peng
标识
DOI:10.1016/j.ijbiomac.2023.127953
摘要
Colletotrichum higginsianum causes anthracnose disease in brassicas. The availability of the C. higginsianum genome has paved the way for the genome-wide exploration of genes associated with virulence/pathogenicity. However, delimiting the biological functions of these genes remains an arduous task due to the recalcitrance of C. higginsianum to genetic manipulations. Here, we report a CRISPR/Cas9-based system that can knock out the genes in C. higginsianum with a staggering 100% homologous recombination frequency (HRF). The system comprises two vectors: pCas9-Ch_tRp-sgRNA, in which a C. higginsianum glutaminyl-tRNA drives the expression of sgRNA, and pCE-Zero-HPT carrying a donor DNA cassette containing the marker gene HPT flanked by homology arms. Upon co-transformation of the C. higginsianum protoplasts, pCas9-Ch_tRp-sgRNA causes a DNA double-strand break in the targeted gene, followed by homology-directed replacement of the gene with HPT by pCE-Zero-HPT, thereby generating loss-of-function mutants. Using the system, we generated the knockout mutants of two effector candidates (ChBas3 and OBR06881) with a 100% HRF. Interestingly, the ΔChBas3 and ΔOBR06881 mutants did not seem to affect the C. higginsianum infection of Arabidopsis thaliana. Altogether, the CRISPR/Cas9 system developed in the study enables the targeted deletion of genes, including effectors, in C. higginsianum, thus determining their biological functions.
科研通智能强力驱动
Strongly Powered by AbleSci AI