计算机科学
入侵检测系统
集成学习
时间轴
机器学习
人工智能
背景(考古学)
修剪
任务(项目管理)
入侵
数据挖掘
古生物学
管理
考古
地球化学
生物
农学
经济
历史
地质学
作者
Thiago José Lucas,Inaê Soares de Figueiredo,Carlos Alexandre Carvalho Tojeiro,Alex Marino Gonçalves de Almeida,Rafał Scherer,José Remo Ferreira Brega,João Paulo Papa,Kelton Augusto Pontara da Costa
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:11: 122638-122676
标识
DOI:10.1109/access.2023.3328535
摘要
Machine learning algorithms present a robust alternative for building Intrusion Detection Systems due to their ability to recognize attacks in computer network traffic by recognizing patterns in large amounts of data. Typically, classifiers are trained for this task. Together, ensemble learning algorithms have increased the performance of these detectors, reducing classification errors and allowing computer networks to be more protected. This research presents a comprehensive Systematic Review of the Literature where works related to intrusion detection with ensemble learning were obtained from the most relevant scientific bases. We offer 188 works, several compilations of datasets, classifiers, and ensemble algorithms, and document the experiments that stood out in their performance. A characteristic of this research is its originality. We found two surveys in the literature specifically focusing on the relationship between ensemble techniques and intrusion detection. We present for the last eight years covered by this survey a timeline-based view of the works studied to highlight evolutions and trends. The results obtained by our survey show a growing area, with excellent results in detecting attacks but with needs for improvement in pruning for choosing classifiers, which makes this work unprecedented for this context.
科研通智能强力驱动
Strongly Powered by AbleSci AI