A Comprehensive Survey on Ensemble Learning-Based Intrusion Detection Approaches in Computer Networks

计算机科学 入侵检测系统 集成学习 时间轴 机器学习 人工智能 背景(考古学) 修剪 任务(项目管理) 入侵 数据挖掘 古生物学 管理 考古 地球化学 生物 农学 经济 历史 地质学
作者
Thiago José Lucas,Inaê Soares de Figueiredo,Carlos Alexandre Carvalho Tojeiro,Alex Marino Gonçalves de Almeida,Rafał Scherer,José Remo Ferreira Brega,João Paulo Papa,Kelton Augusto Pontara da Costa
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 122638-122676
标识
DOI:10.1109/access.2023.3328535
摘要

Machine learning algorithms present a robust alternative for building Intrusion Detection Systems due to their ability to recognize attacks in computer network traffic by recognizing patterns in large amounts of data. Typically, classifiers are trained for this task. Together, ensemble learning algorithms have increased the performance of these detectors, reducing classification errors and allowing computer networks to be more protected. This research presents a comprehensive Systematic Review of the Literature where works related to intrusion detection with ensemble learning were obtained from the most relevant scientific bases. We offer 188 works, several compilations of datasets, classifiers, and ensemble algorithms, and document the experiments that stood out in their performance. A characteristic of this research is its originality. We found two surveys in the literature specifically focusing on the relationship between ensemble techniques and intrusion detection. We present for the last eight years covered by this survey a timeline-based view of the works studied to highlight evolutions and trends. The results obtained by our survey show a growing area, with excellent results in detecting attacks but with needs for improvement in pruning for choosing classifiers, which makes this work unprecedented for this context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
XX完成签到,获得积分10
1秒前
美好斓发布了新的文献求助10
1秒前
云枝发布了新的文献求助10
2秒前
CSQ发布了新的文献求助10
2秒前
marc107完成签到,获得积分10
2秒前
JamesPei应助hufan2441采纳,获得10
2秒前
XYF完成签到 ,获得积分10
2秒前
陈军应助wan采纳,获得10
3秒前
清清旋雪发布了新的文献求助10
3秒前
赘婿应助兰先生采纳,获得10
4秒前
FashionBoy应助安详沛萍采纳,获得10
5秒前
自强不息完成签到,获得积分10
6秒前
桐桐应助石楠采纳,获得10
6秒前
起风了完成签到,获得积分10
7秒前
7秒前
lanlan完成签到,获得积分10
8秒前
ax完成签到,获得积分10
8秒前
gujunl完成签到,获得积分10
8秒前
大模型应助kaoyear采纳,获得10
9秒前
10秒前
11秒前
punch发布了新的文献求助10
12秒前
12秒前
顾矜应助lele采纳,获得10
13秒前
13秒前
大模型应助靖霜采纳,获得10
14秒前
夏季发布了新的文献求助10
14秒前
15秒前
fifteen发布了新的文献求助10
16秒前
英姑应助Fury采纳,获得10
16秒前
lixue1993应助cure采纳,获得10
16秒前
石楠发布了新的文献求助10
17秒前
意忆完成签到,获得积分10
18秒前
zhao完成签到 ,获得积分20
20秒前
CSQ完成签到,获得积分20
20秒前
大橙子应助眼睛大花生采纳,获得10
21秒前
科比完成签到,获得积分10
21秒前
21秒前
xkyasc发布了新的文献求助10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154241
求助须知:如何正确求助?哪些是违规求助? 2805095
关于积分的说明 7863477
捐赠科研通 2463276
什么是DOI,文献DOI怎么找? 1311205
科研通“疑难数据库(出版商)”最低求助积分说明 629486
版权声明 601821