Learning Aligned Audiovisual Representations for Multimodal Sentiment Analysis

计算机科学 杠杆(统计) 编码器 模式 多模式学习 人工智能 语音识别 任务(项目管理) 标记数据 变压器 背景(考古学) 机器学习 自然语言处理 古生物学 社会科学 物理 管理 量子力学 电压 社会学 经济 生物 操作系统
作者
Chaoyue Ding,Daoming Zong,Baoxiang Li,Ken Zheng,Dinghao Zhou,Jiakui Li,Qunyan Zhou
标识
DOI:10.1145/3607865.3613184
摘要

In this paper, we present the solutions to the MER-SEMI subchallenge of Multimodal Emotion Recognition Challenge (MER 2023). This subchallenge focuses on predicting discrete emotions for a small subset of unlabeled videos within the context of semi-supervised learning. Participants are provided with a combination of labeled and large amounts of unlabeled videos. Our preliminary experiments on labeled videos demonstrate that this task is primarily driven by the video and audio modalities, while the text modality plays a relatively weaker role in emotion prediction. To address this challenge, we propose the Video-Audio Transformer (VAT), which takes raw signals as inputs and extracts multimodal representations. VAT comprises a video encoder, an audio encoder, and a cross-modal encoder. To leverage the vast amount of unlabeled data, we introduce a contrastive loss to align the image and audio representations before fusing them through cross-modal attention. Additionally, to enhance the model's ability to learn from noisy video data, we apply momentum distillation, a self-training method that learns from pseudo-targets generated by a momentum model. Furthermore, we fine-tune VAT on annotated video data specifically for emotion recognition. Experimental results on the MER-SEMI task have shown the effectiveness of the proposed VAT model. Notably, our model ranks first (0.891) on the leaderboard. Our project is publicly available at https://github.com/dingchaoyue/Multimodal-Emotion-Recognition-MER-and-MuSe-2023-Challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默便当完成签到 ,获得积分20
刚刚
迷路的祥完成签到 ,获得积分10
刚刚
小王发布了新的文献求助10
刚刚
Lucas应助迷路水池采纳,获得30
刚刚
mmmio完成签到,获得积分10
1秒前
小蘑菇应助软嘴唇采纳,获得10
1秒前
ASZXDW发布了新的文献求助10
1秒前
1秒前
科研道尔格完成签到,获得积分10
1秒前
X1x1A0Q1完成签到,获得积分10
1秒前
Catherine发布了新的文献求助30
2秒前
甜蜜靖雁完成签到 ,获得积分10
2秒前
CipherSage应助无语的怜蕾采纳,获得10
2秒前
小池同学完成签到,获得积分10
2秒前
zcl应助任性采萱采纳,获得50
3秒前
浮游应助Sheepycat采纳,获得10
3秒前
ywang发布了新的文献求助10
3秒前
科研小陈发布了新的文献求助10
3秒前
yangqi完成签到,获得积分10
3秒前
4秒前
dongle完成签到,获得积分10
4秒前
Pan完成签到 ,获得积分10
5秒前
5秒前
川荣李奈完成签到 ,获得积分10
6秒前
牛京完成签到,获得积分10
7秒前
浮游应助酷炫傲安采纳,获得10
7秒前
李健应助ask采纳,获得10
7秒前
cheers完成签到,获得积分10
7秒前
Owen应助依琬采纳,获得10
8秒前
8秒前
77完成签到 ,获得积分10
8秒前
田様应助北楠采纳,获得10
8秒前
leolin发布了新的文献求助20
8秒前
啦啦啦啦完成签到,获得积分10
9秒前
俊秀的千万完成签到,获得积分10
9秒前
华仔应助杭笑寒采纳,获得10
10秒前
田様应助哭泣的雪巧采纳,获得30
10秒前
10秒前
jiang完成签到,获得积分10
11秒前
CodeCraft应助voifhpg采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001060
求助须知:如何正确求助?哪些是违规求助? 4246201
关于积分的说明 13228838
捐赠科研通 4044813
什么是DOI,文献DOI怎么找? 2212873
邀请新用户注册赠送积分活动 1223033
关于科研通互助平台的介绍 1143352