Block-RACS: Towards Reputation-Aware Client Selection and Monetization Mechanism for Federated Learning

货币化 计算机科学 块(置换群论) 众包 声誉 质量(理念) 数字加密货币 计算机安全 中间件(分布式应用) 分布式计算 万维网 认识论 社会学 经济 宏观经济学 社会科学 哲学 几何学 数学
作者
Zahra Batool,Kaiwen Zhang,Matthew Toews
出处
期刊:Applied computing review [Association for Computing Machinery]
卷期号:23 (3): 49-65 被引量:3
标识
DOI:10.1145/3626307.3626311
摘要

Federated Learning (FL) is a promising solution for training using data collected from heterogeneous sources (e.g., mobile devices) while avoiding the transmission of large amounts of raw data and preserving privacy. Current FL approaches operate in an iterative manner by selecting a subset of participants each round, asking them to training using their latest local data over the most recent version of the global model, before collecting these local model updates and aggregating them to form the next iteration of the global model, and so forth until convergence is reached. Unfortunately, existing FL approaches typically select randomly the set of clients to use each round, which can negatively impact the quality of the model trained, as well the training round time due to the straggler problem. Moreover, clients, especially mobile devices with limited resources, should be incentivized to participate as federated learning is essentially a form of crowdsourcing for AI which requires monetization. We argue that integrating blockchain and smart contract technologies into FL can solve the two aforementioned issues. In this paper, we present Block-RACS (Blockchain-based Reputation Aware Client Selection), a mechanism for FL operating in a smart contract which rewards clients for their participation using cryptocurrencies. Block-RACS employs a multidimensional auction mechanism for selecting users based on the compute and network resources offered by each client, as well as the quality of their local data. This auction is realized in a reliable and auditable manner through a smart contract. This allows Block-RACS to measure the relative contribution of each client by calculating a Shapley value and allocating rewards accordingly. Moreover, a blockchain-based reputation mechanism enables audibility and non-repudiation. The security analysis of the system is also presented to check the security vulnerabilities. We have implemented Block-RACS using Solidity and tested on the Ethereum blockchain with various popular datasets. Our results show that Block-RACS outperforms existing baseline schemes by improving accuracy and reducing the number of FL rounds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
弄香发布了新的文献求助10
1秒前
欣慰的白羊完成签到,获得积分10
2秒前
fanhongpeng完成签到 ,获得积分10
2秒前
2秒前
3秒前
ermiao发布了新的文献求助10
3秒前
小李子完成签到,获得积分10
5秒前
JamesPei应助曙丽盼采纳,获得10
6秒前
无极微光应助隐形的若灵采纳,获得20
6秒前
打打应助种花家的狗狗采纳,获得10
6秒前
善学以致用应助TingtingGZ采纳,获得10
6秒前
Stroeve完成签到,获得积分10
7秒前
lzylzy完成签到,获得积分10
7秒前
8秒前
8秒前
zh完成签到,获得积分10
10秒前
lzylzy发布了新的文献求助10
11秒前
12秒前
李顺利给李顺利的求助进行了留言
13秒前
13秒前
13秒前
14秒前
14秒前
15秒前
15秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
yanghj完成签到,获得积分20
18秒前
18秒前
19秒前
莎akkk发布了新的文献求助10
20秒前
曙丽盼发布了新的文献求助10
20秒前
Hermon发布了新的文献求助10
20秒前
星辰大海应助七栀采纳,获得10
20秒前
TingtingGZ发布了新的文献求助10
21秒前
LD20000620完成签到,获得积分10
21秒前
22秒前
23秒前
hy1234完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526942
求助须知:如何正确求助?哪些是违规求助? 4616873
关于积分的说明 14556205
捐赠科研通 4555440
什么是DOI,文献DOI怎么找? 2496353
邀请新用户注册赠送积分活动 1476654
关于科研通互助平台的介绍 1448212