Block-RACS: Towards Reputation-Aware Client Selection and Monetization Mechanism for Federated Learning

货币化 计算机科学 块(置换群论) 众包 声誉 质量(理念) 数字加密货币 计算机安全 中间件(分布式应用) 分布式计算 万维网 认识论 社会学 经济 宏观经济学 社会科学 哲学 几何学 数学
作者
Zahra Batool,Kaiwen Zhang,Matthew Toews
出处
期刊:Applied computing review [Association for Computing Machinery]
卷期号:23 (3): 49-65 被引量:3
标识
DOI:10.1145/3626307.3626311
摘要

Federated Learning (FL) is a promising solution for training using data collected from heterogeneous sources (e.g., mobile devices) while avoiding the transmission of large amounts of raw data and preserving privacy. Current FL approaches operate in an iterative manner by selecting a subset of participants each round, asking them to training using their latest local data over the most recent version of the global model, before collecting these local model updates and aggregating them to form the next iteration of the global model, and so forth until convergence is reached. Unfortunately, existing FL approaches typically select randomly the set of clients to use each round, which can negatively impact the quality of the model trained, as well the training round time due to the straggler problem. Moreover, clients, especially mobile devices with limited resources, should be incentivized to participate as federated learning is essentially a form of crowdsourcing for AI which requires monetization. We argue that integrating blockchain and smart contract technologies into FL can solve the two aforementioned issues. In this paper, we present Block-RACS (Blockchain-based Reputation Aware Client Selection), a mechanism for FL operating in a smart contract which rewards clients for their participation using cryptocurrencies. Block-RACS employs a multidimensional auction mechanism for selecting users based on the compute and network resources offered by each client, as well as the quality of their local data. This auction is realized in a reliable and auditable manner through a smart contract. This allows Block-RACS to measure the relative contribution of each client by calculating a Shapley value and allocating rewards accordingly. Moreover, a blockchain-based reputation mechanism enables audibility and non-repudiation. The security analysis of the system is also presented to check the security vulnerabilities. We have implemented Block-RACS using Solidity and tested on the Ethereum blockchain with various popular datasets. Our results show that Block-RACS outperforms existing baseline schemes by improving accuracy and reducing the number of FL rounds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
华仔应助Dylan采纳,获得30
3秒前
DK完成签到,获得积分10
3秒前
完美世界应助大气的鞋垫采纳,获得10
3秒前
正直静曼完成签到 ,获得积分10
3秒前
XiangQin完成签到,获得积分10
4秒前
4秒前
小蘑菇应助仲夏夜之梦采纳,获得10
4秒前
acadedog发布了新的文献求助10
4秒前
zhangpeng完成签到,获得积分10
5秒前
5秒前
小蘑菇应助传统的松鼠采纳,获得10
5秒前
5秒前
6秒前
6秒前
7秒前
李李李发布了新的文献求助10
7秒前
7秒前
8秒前
starlx0813发布了新的文献求助10
9秒前
10秒前
纯真的盼柳完成签到,获得积分10
10秒前
温婉的凝丹完成签到,获得积分10
10秒前
11秒前
胡姬花发布了新的文献求助10
12秒前
12秒前
12秒前
蓦然发布了新的文献求助10
13秒前
13秒前
852应助喜悦的皮卡丘采纳,获得10
13秒前
13秒前
鸭爪爪发布了新的文献求助10
14秒前
15秒前
15秒前
Ankie发布了新的文献求助10
15秒前
Akira发布了新的文献求助10
15秒前
16秒前
lili完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737586
求助须知:如何正确求助?哪些是违规求助? 5373212
关于积分的说明 15335749
捐赠科研通 4880965
什么是DOI,文献DOI怎么找? 2623199
邀请新用户注册赠送积分活动 1572027
关于科研通互助平台的介绍 1528848