Block-RACS: Towards Reputation-Aware Client Selection and Monetization Mechanism for Federated Learning

货币化 计算机科学 块(置换群论) 众包 声誉 质量(理念) 数字加密货币 计算机安全 中间件(分布式应用) 分布式计算 万维网 认识论 社会学 经济 宏观经济学 社会科学 哲学 几何学 数学
作者
Zahra Batool,Kaiwen Zhang,Matthew Toews
出处
期刊:Applied computing review [Association for Computing Machinery]
卷期号:23 (3): 49-65 被引量:3
标识
DOI:10.1145/3626307.3626311
摘要

Federated Learning (FL) is a promising solution for training using data collected from heterogeneous sources (e.g., mobile devices) while avoiding the transmission of large amounts of raw data and preserving privacy. Current FL approaches operate in an iterative manner by selecting a subset of participants each round, asking them to training using their latest local data over the most recent version of the global model, before collecting these local model updates and aggregating them to form the next iteration of the global model, and so forth until convergence is reached. Unfortunately, existing FL approaches typically select randomly the set of clients to use each round, which can negatively impact the quality of the model trained, as well the training round time due to the straggler problem. Moreover, clients, especially mobile devices with limited resources, should be incentivized to participate as federated learning is essentially a form of crowdsourcing for AI which requires monetization. We argue that integrating blockchain and smart contract technologies into FL can solve the two aforementioned issues. In this paper, we present Block-RACS (Blockchain-based Reputation Aware Client Selection), a mechanism for FL operating in a smart contract which rewards clients for their participation using cryptocurrencies. Block-RACS employs a multidimensional auction mechanism for selecting users based on the compute and network resources offered by each client, as well as the quality of their local data. This auction is realized in a reliable and auditable manner through a smart contract. This allows Block-RACS to measure the relative contribution of each client by calculating a Shapley value and allocating rewards accordingly. Moreover, a blockchain-based reputation mechanism enables audibility and non-repudiation. The security analysis of the system is also presented to check the security vulnerabilities. We have implemented Block-RACS using Solidity and tested on the Ethereum blockchain with various popular datasets. Our results show that Block-RACS outperforms existing baseline schemes by improving accuracy and reducing the number of FL rounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
晓风残月发布了新的文献求助10
刚刚
cyq完成签到,获得积分20
刚刚
1秒前
理荒秽完成签到,获得积分10
1秒前
DDDD发布了新的文献求助10
1秒前
2秒前
2秒前
Jingkai应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
HMBB完成签到,获得积分10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
深情安青应助qi采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得30
3秒前
浮游应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
坦率灵槐应助科研通管家采纳,获得10
4秒前
4秒前
小蘑菇应助科研通管家采纳,获得30
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
英俊的铭应助刘轩雨采纳,获得10
5秒前
hubert发布了新的文献求助50
5秒前
顾矜应助呆萌芙蓉采纳,获得10
5秒前
福崽完成签到,获得积分10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329525
求助须知:如何正确求助?哪些是违规求助? 4469070
关于积分的说明 13907915
捐赠科研通 4362170
什么是DOI,文献DOI怎么找? 2396235
邀请新用户注册赠送积分活动 1389597
关于科研通互助平台的介绍 1360467