Block-RACS: Towards Reputation-Aware Client Selection and Monetization Mechanism for Federated Learning

货币化 计算机科学 块(置换群论) 众包 声誉 质量(理念) 数字加密货币 计算机安全 中间件(分布式应用) 分布式计算 万维网 认识论 社会学 经济 宏观经济学 社会科学 哲学 几何学 数学
作者
Zahra Batool,Kaiwen Zhang,Matthew Toews
出处
期刊:Applied computing review [Association for Computing Machinery]
卷期号:23 (3): 49-65 被引量:3
标识
DOI:10.1145/3626307.3626311
摘要

Federated Learning (FL) is a promising solution for training using data collected from heterogeneous sources (e.g., mobile devices) while avoiding the transmission of large amounts of raw data and preserving privacy. Current FL approaches operate in an iterative manner by selecting a subset of participants each round, asking them to training using their latest local data over the most recent version of the global model, before collecting these local model updates and aggregating them to form the next iteration of the global model, and so forth until convergence is reached. Unfortunately, existing FL approaches typically select randomly the set of clients to use each round, which can negatively impact the quality of the model trained, as well the training round time due to the straggler problem. Moreover, clients, especially mobile devices with limited resources, should be incentivized to participate as federated learning is essentially a form of crowdsourcing for AI which requires monetization. We argue that integrating blockchain and smart contract technologies into FL can solve the two aforementioned issues. In this paper, we present Block-RACS (Blockchain-based Reputation Aware Client Selection), a mechanism for FL operating in a smart contract which rewards clients for their participation using cryptocurrencies. Block-RACS employs a multidimensional auction mechanism for selecting users based on the compute and network resources offered by each client, as well as the quality of their local data. This auction is realized in a reliable and auditable manner through a smart contract. This allows Block-RACS to measure the relative contribution of each client by calculating a Shapley value and allocating rewards accordingly. Moreover, a blockchain-based reputation mechanism enables audibility and non-repudiation. The security analysis of the system is also presented to check the security vulnerabilities. We have implemented Block-RACS using Solidity and tested on the Ethereum blockchain with various popular datasets. Our results show that Block-RACS outperforms existing baseline schemes by improving accuracy and reducing the number of FL rounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花儿向杨开完成签到,获得积分10
刚刚
pzy发布了新的文献求助10
刚刚
领导范儿应助月蚀六花采纳,获得10
1秒前
雍乘风完成签到,获得积分10
1秒前
缓慢完成签到,获得积分10
1秒前
3秒前
3秒前
九月完成签到,获得积分10
6秒前
悦耳破茧完成签到 ,获得积分10
6秒前
zz完成签到,获得积分10
8秒前
捞鱼完成签到,获得积分10
10秒前
小溪完成签到 ,获得积分10
10秒前
传奇3应助wanglihui采纳,获得10
10秒前
阿连完成签到,获得积分10
12秒前
12秒前
chenyan完成签到,获得积分10
12秒前
魔幻嚓茶完成签到,获得积分10
14秒前
15秒前
SciGPT应助月蚀六花采纳,获得10
15秒前
共享精神应助从容藏花采纳,获得20
16秒前
17秒前
Bambi发布了新的文献求助10
18秒前
19秒前
20秒前
呓语发布了新的文献求助10
21秒前
我是老大应助Akun采纳,获得10
22秒前
英姑应助月蚀六花采纳,获得10
23秒前
小溪发布了新的文献求助10
24秒前
所所应助Bambi采纳,获得10
25秒前
ssh完成签到,获得积分10
27秒前
小费发布了新的文献求助50
28秒前
29秒前
善学以致用应助清秀伟宸采纳,获得10
30秒前
30秒前
小二郎应助月蚀六花采纳,获得10
31秒前
Jack80应助mm采纳,获得50
32秒前
PaulLao完成签到,获得积分10
33秒前
35秒前
大个应助Docoroli采纳,获得10
36秒前
wonder123完成签到,获得积分10
36秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329350
求助须知:如何正确求助?哪些是违规求助? 2959031
关于积分的说明 8594090
捐赠科研通 2637507
什么是DOI,文献DOI怎么找? 1443599
科研通“疑难数据库(出版商)”最低求助积分说明 668773
邀请新用户注册赠送积分活动 656176