Block-RACS: Towards Reputation-Aware Client Selection and Monetization Mechanism for Federated Learning

货币化 计算机科学 块(置换群论) 众包 声誉 质量(理念) 数字加密货币 计算机安全 中间件(分布式应用) 分布式计算 万维网 宏观经济学 社会学 经济 哲学 几何学 认识论 社会科学 数学
作者
Zahra Batool,Kaiwen Zhang,Matthew Toews
出处
期刊:Applied computing review [Association for Computing Machinery]
卷期号:23 (3): 49-65 被引量:3
标识
DOI:10.1145/3626307.3626311
摘要

Federated Learning (FL) is a promising solution for training using data collected from heterogeneous sources (e.g., mobile devices) while avoiding the transmission of large amounts of raw data and preserving privacy. Current FL approaches operate in an iterative manner by selecting a subset of participants each round, asking them to training using their latest local data over the most recent version of the global model, before collecting these local model updates and aggregating them to form the next iteration of the global model, and so forth until convergence is reached. Unfortunately, existing FL approaches typically select randomly the set of clients to use each round, which can negatively impact the quality of the model trained, as well the training round time due to the straggler problem. Moreover, clients, especially mobile devices with limited resources, should be incentivized to participate as federated learning is essentially a form of crowdsourcing for AI which requires monetization. We argue that integrating blockchain and smart contract technologies into FL can solve the two aforementioned issues. In this paper, we present Block-RACS (Blockchain-based Reputation Aware Client Selection), a mechanism for FL operating in a smart contract which rewards clients for their participation using cryptocurrencies. Block-RACS employs a multidimensional auction mechanism for selecting users based on the compute and network resources offered by each client, as well as the quality of their local data. This auction is realized in a reliable and auditable manner through a smart contract. This allows Block-RACS to measure the relative contribution of each client by calculating a Shapley value and allocating rewards accordingly. Moreover, a blockchain-based reputation mechanism enables audibility and non-repudiation. The security analysis of the system is also presented to check the security vulnerabilities. We have implemented Block-RACS using Solidity and tested on the Ethereum blockchain with various popular datasets. Our results show that Block-RACS outperforms existing baseline schemes by improving accuracy and reducing the number of FL rounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫念柏完成签到,获得积分10
1秒前
Gracebing发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
淡定的寒安完成签到,获得积分10
2秒前
2秒前
2秒前
bkagyin应助小余采纳,获得10
2秒前
lsy完成签到,获得积分20
3秒前
辛夷完成签到 ,获得积分10
3秒前
爆米花应助一一采纳,获得10
3秒前
3秒前
3秒前
morlison完成签到,获得积分10
3秒前
3秒前
wave发布了新的文献求助10
3秒前
JV完成签到 ,获得积分10
4秒前
4秒前
不敢装睡完成签到,获得积分10
4秒前
活ni的pig完成签到 ,获得积分10
4秒前
dsv完成签到,获得积分10
4秒前
CodeCraft应助za==采纳,获得10
5秒前
VicTarZ完成签到,获得积分10
5秒前
5秒前
5秒前
77发布了新的文献求助10
5秒前
bhappy21完成签到,获得积分10
5秒前
ty7889完成签到,获得积分10
5秒前
KAG关闭了KAG文献求助
6秒前
6秒前
吴必胜完成签到,获得积分10
6秒前
傅予菲完成签到,获得积分10
6秒前
苹果酸奶完成签到 ,获得积分10
6秒前
03完成签到,获得积分10
6秒前
7秒前
JiaJiaQing发布了新的文献求助10
7秒前
柱zzz发布了新的文献求助10
7秒前
Daisy应助卖萌的秋田采纳,获得10
7秒前
缥缈的蚂蚁完成签到,获得积分20
7秒前
搞怪满天发布了新的文献求助10
7秒前
7秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016369
求助须知:如何正确求助?哪些是违规求助? 3556535
关于积分的说明 11321511
捐赠科研通 3289320
什么是DOI,文献DOI怎么找? 1812429
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060