亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Optimization of a Model for Predicting the Remaining Useful Life and Fault Diagnosis of Landing Gear

自回归模型 起落架 预言 断层(地质) 超参数 机身 工程类 预测性维护 可靠性工程 状态维修 计算机科学 人工智能 统计 结构工程 数学 地质学 地震学
作者
Yuan‐Jen Chang,He-Kai Hsu,Tzu-Hsuan Hsu,Tsung-Ti Chen,Po-Wen Hwang
出处
期刊:Aerospace [MDPI AG]
卷期号:10 (11): 963-963 被引量:2
标识
DOI:10.3390/aerospace10110963
摘要

With the development of next-generation airplanes, the complexity of equipment has increased rapidly, and traditional maintenance solutions have become cost-intensive and time-consuming. Therefore, the main objective of this study is to adopt predictive maintenance techniques in daily maintenance in order to reduce manpower, time, and the cost of maintenance, as well as increase aircraft availability. The landing gear system is an important component of an aircraft. Wear and tear on the parts of the landing gear may result in oscillations during take-off and landing rolling and even affect the safety of the fuselage in severe cases. This study acquires vibration signals from the flight data recorder and uses prognostic and health management technology to evaluate the health indicators (HI) of the landing gear. The HI is used to monitor the health status and predict the remaining useful life (RUL). The RUL prediction model is optimized through hyperparameter optimization and using the random search algorithm. Using the RUL prediction model, the health status of the landing gear can be monitored, and adaptive maintenance can be carried out. After the optimization of the RUL prediction model, the root-mean-square errors of the three RUL prediction models, that is, the autoregressive model, Gaussian process regression, and the autoregressive integrated moving average, decreased by 45.69%, 55.18%, and 1.34%, respectively. In addition, the XGBoost algorithm is applied to simultaneously output multiple fault types. This model provides a more realistic representation of the actual conditions under which an aircraft might exhibit multiple faults. With an optimal fault diagnosis model, when an anomaly is detected in the landing gear, the faulty part can be quickly diagnosed, thus enabling faster and more adaptive maintenance. The optimized multi-fault diagnosis model proposed in this study achieves average accuracy, a precision rate, a recall rate, and an F1 score of more than 96.8% for twenty types of faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
斯文败类应助yan采纳,获得10
4秒前
bxxxxx完成签到,获得积分10
7秒前
XYX发布了新的文献求助10
9秒前
10秒前
yan发布了新的文献求助10
16秒前
17秒前
21秒前
汉德萌多林完成签到,获得积分10
21秒前
佳佳发布了新的文献求助10
26秒前
懒羊羊大王完成签到 ,获得积分10
29秒前
舒心平文发布了新的文献求助10
32秒前
35秒前
小马甲应助科研通管家采纳,获得10
36秒前
WUWUWU应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
隐形曼青应助科研通管家采纳,获得30
36秒前
36秒前
火星完成签到 ,获得积分10
37秒前
42秒前
yyyyy5发布了新的文献求助10
46秒前
ran完成签到 ,获得积分10
50秒前
子平完成签到 ,获得积分10
1分钟前
个性的大白菜真实的钥匙完成签到 ,获得积分10
1分钟前
1分钟前
风起云涌龙完成签到 ,获得积分0
1分钟前
滕皓轩完成签到 ,获得积分10
1分钟前
1分钟前
桐桐应助yan采纳,获得10
1分钟前
1分钟前
1分钟前
夜雨完成签到,获得积分10
1分钟前
yan发布了新的文献求助10
1分钟前
学不完了完成签到 ,获得积分10
1分钟前
HonestLiang完成签到,获得积分10
1分钟前
yan完成签到 ,获得积分10
1分钟前
frap完成签到,获得积分10
1分钟前
边曦完成签到 ,获得积分10
2分钟前
hujialinda完成签到,获得积分10
2分钟前
等待的花生完成签到,获得积分10
2分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314338
求助须知:如何正确求助?哪些是违规求助? 2946617
关于积分的说明 8531029
捐赠科研通 2622350
什么是DOI,文献DOI怎么找? 1434469
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650855