The Optimization of a Model for Predicting the Remaining Useful Life and Fault Diagnosis of Landing Gear

自回归模型 起落架 预言 断层(地质) 超参数 机身 工程类 预测性维护 可靠性工程 状态维修 计算机科学 人工智能 统计 结构工程 数学 地震学 地质学
作者
Yuan‐Jen Chang,He-Kai Hsu,Tzu-Hsuan Hsu,Tsung-Ti Chen,Po-Wen Hwang
出处
期刊:Aerospace [MDPI AG]
卷期号:10 (11): 963-963 被引量:2
标识
DOI:10.3390/aerospace10110963
摘要

With the development of next-generation airplanes, the complexity of equipment has increased rapidly, and traditional maintenance solutions have become cost-intensive and time-consuming. Therefore, the main objective of this study is to adopt predictive maintenance techniques in daily maintenance in order to reduce manpower, time, and the cost of maintenance, as well as increase aircraft availability. The landing gear system is an important component of an aircraft. Wear and tear on the parts of the landing gear may result in oscillations during take-off and landing rolling and even affect the safety of the fuselage in severe cases. This study acquires vibration signals from the flight data recorder and uses prognostic and health management technology to evaluate the health indicators (HI) of the landing gear. The HI is used to monitor the health status and predict the remaining useful life (RUL). The RUL prediction model is optimized through hyperparameter optimization and using the random search algorithm. Using the RUL prediction model, the health status of the landing gear can be monitored, and adaptive maintenance can be carried out. After the optimization of the RUL prediction model, the root-mean-square errors of the three RUL prediction models, that is, the autoregressive model, Gaussian process regression, and the autoregressive integrated moving average, decreased by 45.69%, 55.18%, and 1.34%, respectively. In addition, the XGBoost algorithm is applied to simultaneously output multiple fault types. This model provides a more realistic representation of the actual conditions under which an aircraft might exhibit multiple faults. With an optimal fault diagnosis model, when an anomaly is detected in the landing gear, the faulty part can be quickly diagnosed, thus enabling faster and more adaptive maintenance. The optimized multi-fault diagnosis model proposed in this study achieves average accuracy, a precision rate, a recall rate, and an F1 score of more than 96.8% for twenty types of faults.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
调皮秋凌完成签到,获得积分20
1秒前
1秒前
荣容完成签到 ,获得积分10
1秒前
2秒前
2秒前
Stone完成签到,获得积分10
2秒前
不吃橘子发布了新的文献求助30
2秒前
陈秋禹发布了新的文献求助10
3秒前
科研通AI6应助bnvgx采纳,获得10
3秒前
浮游应助派大星采纳,获得10
3秒前
3秒前
今后应助luchang123qq采纳,获得10
4秒前
4秒前
uniseen发布了新的文献求助10
5秒前
5秒前
汤飞柏发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
wzy发布了新的文献求助10
7秒前
7秒前
7秒前
静乖乖发布了新的文献求助10
7秒前
蜜桃奇迹发布了新的文献求助10
7秒前
轻薄的电脑应助蔬菜狗狗采纳,获得20
7秒前
虚心十三发布了新的文献求助10
8秒前
luchong发布了新的文献求助30
8秒前
9秒前
9秒前
9秒前
Rufina0720发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
xyy发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978