Medical federated learning with joint graph purification for noisy label learning

计算机科学 利用 降噪 图形 差别隐私 分类器(UML) 基本事实 机器学习 人为噪声 人工智能 噪音(视频) 数据挖掘 理论计算机科学 图像(数学) 计算机网络 计算机安全 频道(广播) 发射机
作者
Zhen Chen,Wuyang Li,Xiaohan Xing,Yixuan Yuan
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:90: 102976-102976 被引量:7
标识
DOI:10.1016/j.media.2023.102976
摘要

In terms of increasing privacy issues, Federated Learning (FL) has received extensive attention in medical imaging. Through collaborative training, FL can produce superior diagnostic models with global knowledge, while preserving private data locally. In practice, medical diagnosis suffers from intra-/inter-observer variability, thus label noise is inevitable in dataset preparation. Different from existing studies on centralized datasets, the label noise problem in FL scenarios confronts more challenges, due to data inaccessibility and even noise heterogeneity. In this work, we propose a federated framework with joint Graph Purification (FedGP) to address the label noise in FL through server and clients collaboration. Specifically, to overcome the impact of label noise on local training, we first devise a noisy graph purification on the client side to generate reliable pseudo labels by progressively expanding the purified graph with topological knowledge. Then, we further propose a graph-guided negative ensemble loss to exploit the topology of the client-side purified graph with robust complementary supervision against label noise. Moreover, to address the FL label noise with data silos, we propose a global centroid aggregation on the server side to produce a robust classifier with global knowledge, which can be optimized collaboratively in the FL framework. Extensive experiments are conducted on endoscopic and pathological images with the comparison under the homogeneous, heterogeneous, and real-world label noise for medical FL. Among these diverse noisy FL settings, our FedGP framework significantly outperforms denoising and noisy FL state-of-the-arts by a large margin. The source code is available at https://github.com/CUHK-AIM-Group/FedGP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jc发布了新的文献求助20
1秒前
zhabgyyy发布了新的文献求助10
1秒前
XHL完成签到,获得积分20
1秒前
爆米花完成签到,获得积分10
1秒前
hxhcjdsg发布了新的文献求助10
1秒前
陈陈陈发布了新的文献求助30
1秒前
llyu发布了新的文献求助10
1秒前
小Y应助jygjhgy采纳,获得20
1秒前
1秒前
2秒前
yy湫完成签到,获得积分10
2秒前
3秒前
Lucas应助yan采纳,获得10
3秒前
3秒前
Sui完成签到,获得积分10
3秒前
zhy完成签到 ,获得积分10
4秒前
4秒前
Aki_27完成签到,获得积分10
5秒前
5秒前
5秒前
搜集达人应助健康的巧蕊采纳,获得10
5秒前
5秒前
细心健柏完成签到,获得积分10
6秒前
qingmoheng发布了新的文献求助30
7秒前
量子星尘发布了新的文献求助10
7秒前
银河发布了新的文献求助10
8秒前
8秒前
wuqirui发布了新的文献求助10
8秒前
BareBear应助明亮翠桃采纳,获得10
8秒前
8秒前
LSS完成签到 ,获得积分10
8秒前
9秒前
929完成签到 ,获得积分10
10秒前
11发布了新的文献求助10
10秒前
10秒前
张ZWY完成签到 ,获得积分10
10秒前
ycx发布了新的文献求助10
10秒前
落寞鑫磊完成签到,获得积分10
11秒前
细心健柏发布了新的文献求助20
11秒前
林耳完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472573
求助须知:如何正确求助?哪些是违规求助? 4574866
关于积分的说明 14348499
捐赠科研通 4502178
什么是DOI,文献DOI怎么找? 2466966
邀请新用户注册赠送积分活动 1454927
关于科研通互助平台的介绍 1429235