Medical federated learning with joint graph purification for noisy label learning

计算机科学 利用 降噪 图形 差别隐私 分类器(UML) 基本事实 机器学习 人为噪声 人工智能 噪音(视频) 数据挖掘 理论计算机科学 图像(数学) 计算机网络 计算机安全 频道(广播) 发射机
作者
Zhen Chen,Wuyang Li,Xiaohan Xing,Yixuan Yuan
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:90: 102976-102976 被引量:7
标识
DOI:10.1016/j.media.2023.102976
摘要

In terms of increasing privacy issues, Federated Learning (FL) has received extensive attention in medical imaging. Through collaborative training, FL can produce superior diagnostic models with global knowledge, while preserving private data locally. In practice, medical diagnosis suffers from intra-/inter-observer variability, thus label noise is inevitable in dataset preparation. Different from existing studies on centralized datasets, the label noise problem in FL scenarios confronts more challenges, due to data inaccessibility and even noise heterogeneity. In this work, we propose a federated framework with joint Graph Purification (FedGP) to address the label noise in FL through server and clients collaboration. Specifically, to overcome the impact of label noise on local training, we first devise a noisy graph purification on the client side to generate reliable pseudo labels by progressively expanding the purified graph with topological knowledge. Then, we further propose a graph-guided negative ensemble loss to exploit the topology of the client-side purified graph with robust complementary supervision against label noise. Moreover, to address the FL label noise with data silos, we propose a global centroid aggregation on the server side to produce a robust classifier with global knowledge, which can be optimized collaboratively in the FL framework. Extensive experiments are conducted on endoscopic and pathological images with the comparison under the homogeneous, heterogeneous, and real-world label noise for medical FL. Among these diverse noisy FL settings, our FedGP framework significantly outperforms denoising and noisy FL state-of-the-arts by a large margin. The source code is available at https://github.com/CUHK-AIM-Group/FedGP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯哼哈哈完成签到,获得积分10
刚刚
27发布了新的文献求助10
刚刚
gaoww发布了新的文献求助10
刚刚
cindy完成签到,获得积分10
刚刚
GC完成签到,获得积分20
刚刚
安徽梁朝伟完成签到,获得积分10
1秒前
1秒前
黎明完成签到,获得积分10
1秒前
吴彦祖发布了新的文献求助10
1秒前
北工搬砖完成签到,获得积分10
1秒前
1秒前
2936276825完成签到,获得积分20
1秒前
大圣哥完成签到,获得积分10
2秒前
情怀应助Vincent采纳,获得10
2秒前
上官若男应助迅速的岩采纳,获得10
3秒前
天天玩完成签到,获得积分10
3秒前
静候佳音完成签到 ,获得积分10
3秒前
呼啦啦发布了新的文献求助10
3秒前
Joyce发布了新的文献求助10
3秒前
小坚果发布了新的文献求助10
3秒前
孙宏完成签到,获得积分10
4秒前
4秒前
贺知什么书完成签到,获得积分10
4秒前
gzh完成签到,获得积分10
4秒前
哈哈完成签到,获得积分10
4秒前
haihao完成签到,获得积分10
5秒前
阿松大发布了新的文献求助10
5秒前
Timing侠发布了新的文献求助10
6秒前
6秒前
xie完成签到,获得积分10
7秒前
青菜完成签到,获得积分10
7秒前
kyan完成签到,获得积分10
7秒前
7秒前
无花果应助段鹏鹏采纳,获得10
7秒前
Jared应助群q采纳,获得10
7秒前
aishangkeyan发布了新的文献求助10
8秒前
小无完成签到,获得积分10
8秒前
诚心太君完成签到,获得积分10
8秒前
一直很安静完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006