Medical federated learning with joint graph purification for noisy label learning

计算机科学 利用 降噪 图形 差别隐私 分类器(UML) 基本事实 机器学习 人为噪声 人工智能 噪音(视频) 数据挖掘 理论计算机科学 图像(数学) 计算机网络 计算机安全 频道(广播) 发射机
作者
Zhen Chen,Wuyang Li,Xiaohan Xing,Yixuan Yuan
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:90: 102976-102976 被引量:7
标识
DOI:10.1016/j.media.2023.102976
摘要

In terms of increasing privacy issues, Federated Learning (FL) has received extensive attention in medical imaging. Through collaborative training, FL can produce superior diagnostic models with global knowledge, while preserving private data locally. In practice, medical diagnosis suffers from intra-/inter-observer variability, thus label noise is inevitable in dataset preparation. Different from existing studies on centralized datasets, the label noise problem in FL scenarios confronts more challenges, due to data inaccessibility and even noise heterogeneity. In this work, we propose a federated framework with joint Graph Purification (FedGP) to address the label noise in FL through server and clients collaboration. Specifically, to overcome the impact of label noise on local training, we first devise a noisy graph purification on the client side to generate reliable pseudo labels by progressively expanding the purified graph with topological knowledge. Then, we further propose a graph-guided negative ensemble loss to exploit the topology of the client-side purified graph with robust complementary supervision against label noise. Moreover, to address the FL label noise with data silos, we propose a global centroid aggregation on the server side to produce a robust classifier with global knowledge, which can be optimized collaboratively in the FL framework. Extensive experiments are conducted on endoscopic and pathological images with the comparison under the homogeneous, heterogeneous, and real-world label noise for medical FL. Among these diverse noisy FL settings, our FedGP framework significantly outperforms denoising and noisy FL state-of-the-arts by a large margin. The source code is available at https://github.com/CUHK-AIM-Group/FedGP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChenXY完成签到,获得积分10
刚刚
油麦菜完成签到,获得积分10
刚刚
小次郎完成签到,获得积分20
刚刚
1秒前
纸质超人发布了新的文献求助10
1秒前
1秒前
ze完成签到 ,获得积分10
2秒前
3秒前
郝郝完成签到,获得积分10
3秒前
王子渊发布了新的文献求助10
3秒前
paparazzi221发布了新的文献求助10
4秒前
高兴的代芙完成签到,获得积分10
4秒前
TNT应助Zhijiuz采纳,获得10
5秒前
5秒前
从心发布了新的文献求助10
6秒前
JamesPei应助好吃的香味采纳,获得10
6秒前
OKADM发布了新的文献求助10
6秒前
6秒前
vidotto完成签到,获得积分10
7秒前
rosy发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
流氓恐龙完成签到,获得积分10
8秒前
静静给静静的求助进行了留言
8秒前
9秒前
dzdzn发布了新的文献求助10
9秒前
9秒前
Stanley发布了新的文献求助10
10秒前
鸣笛应助勤奋的如松采纳,获得20
10秒前
10秒前
WentingRao完成签到,获得积分10
10秒前
完美世界应助qwa采纳,获得10
10秒前
10秒前
ljhy完成签到,获得积分20
10秒前
自然的凝冬完成签到,获得积分10
10秒前
10秒前
10秒前
Chow发布了新的文献求助10
12秒前
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603700
求助须知:如何正确求助?哪些是违规求助? 4012310
关于积分的说明 12423171
捐赠科研通 3692797
什么是DOI,文献DOI怎么找? 2035913
邀请新用户注册赠送积分活动 1068997
科研通“疑难数据库(出版商)”最低求助积分说明 953482