Medical federated learning with joint graph purification for noisy label learning

计算机科学 利用 降噪 图形 差别隐私 分类器(UML) 基本事实 机器学习 人为噪声 人工智能 噪音(视频) 数据挖掘 理论计算机科学 图像(数学) 计算机网络 计算机安全 频道(广播) 发射机
作者
Zhen Chen,Wuyang Li,Xiaohan Xing,Yixuan Yuan
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:90: 102976-102976 被引量:7
标识
DOI:10.1016/j.media.2023.102976
摘要

In terms of increasing privacy issues, Federated Learning (FL) has received extensive attention in medical imaging. Through collaborative training, FL can produce superior diagnostic models with global knowledge, while preserving private data locally. In practice, medical diagnosis suffers from intra-/inter-observer variability, thus label noise is inevitable in dataset preparation. Different from existing studies on centralized datasets, the label noise problem in FL scenarios confronts more challenges, due to data inaccessibility and even noise heterogeneity. In this work, we propose a federated framework with joint Graph Purification (FedGP) to address the label noise in FL through server and clients collaboration. Specifically, to overcome the impact of label noise on local training, we first devise a noisy graph purification on the client side to generate reliable pseudo labels by progressively expanding the purified graph with topological knowledge. Then, we further propose a graph-guided negative ensemble loss to exploit the topology of the client-side purified graph with robust complementary supervision against label noise. Moreover, to address the FL label noise with data silos, we propose a global centroid aggregation on the server side to produce a robust classifier with global knowledge, which can be optimized collaboratively in the FL framework. Extensive experiments are conducted on endoscopic and pathological images with the comparison under the homogeneous, heterogeneous, and real-world label noise for medical FL. Among these diverse noisy FL settings, our FedGP framework significantly outperforms denoising and noisy FL state-of-the-arts by a large margin. The source code is available at https://github.com/CUHK-AIM-Group/FedGP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
youyuanDeng发布了新的文献求助10
刚刚
科研通AI2S应助合适苗条采纳,获得10
刚刚
1秒前
BareBear应助任性的水风采纳,获得10
1秒前
KKKkkkkk发布了新的文献求助10
2秒前
2秒前
我会发文章的完成签到,获得积分10
2秒前
天天快乐应助X519664508采纳,获得30
3秒前
zyyicu完成签到,获得积分10
3秒前
3秒前
3秒前
陈承一发布了新的文献求助10
3秒前
风风完成签到 ,获得积分10
5秒前
shidewu完成签到,获得积分10
5秒前
田様应助独角兽先生采纳,获得10
6秒前
6秒前
7秒前
Yultuz友发布了新的文献求助10
7秒前
HP完成签到,获得积分10
7秒前
8秒前
8秒前
英姑应助科研通管家采纳,获得10
8秒前
香蕉诗蕊应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
youyuanDeng完成签到,获得积分10
8秒前
李爱国应助Huguizhou采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
曈曦完成签到 ,获得积分10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
6666应助科研通管家采纳,获得10
8秒前
香蕉诗蕊应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
维奈克拉应助科研通管家采纳,获得10
8秒前
zzzz完成签到,获得积分10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630027
求助须知:如何正确求助?哪些是违规求助? 4721552
关于积分的说明 14972362
捐赠科研通 4788123
什么是DOI,文献DOI怎么找? 2556791
邀请新用户注册赠送积分活动 1517752
关于科研通互助平台的介绍 1478367