Medical federated learning with joint graph purification for noisy label learning

计算机科学 利用 降噪 图形 差别隐私 分类器(UML) 基本事实 机器学习 人为噪声 人工智能 噪音(视频) 数据挖掘 理论计算机科学 图像(数学) 计算机网络 计算机安全 频道(广播) 发射机
作者
Zhen Chen,Wuyang Li,Xiaohan Xing,Yixuan Yuan
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:90: 102976-102976 被引量:7
标识
DOI:10.1016/j.media.2023.102976
摘要

In terms of increasing privacy issues, Federated Learning (FL) has received extensive attention in medical imaging. Through collaborative training, FL can produce superior diagnostic models with global knowledge, while preserving private data locally. In practice, medical diagnosis suffers from intra-/inter-observer variability, thus label noise is inevitable in dataset preparation. Different from existing studies on centralized datasets, the label noise problem in FL scenarios confronts more challenges, due to data inaccessibility and even noise heterogeneity. In this work, we propose a federated framework with joint Graph Purification (FedGP) to address the label noise in FL through server and clients collaboration. Specifically, to overcome the impact of label noise on local training, we first devise a noisy graph purification on the client side to generate reliable pseudo labels by progressively expanding the purified graph with topological knowledge. Then, we further propose a graph-guided negative ensemble loss to exploit the topology of the client-side purified graph with robust complementary supervision against label noise. Moreover, to address the FL label noise with data silos, we propose a global centroid aggregation on the server side to produce a robust classifier with global knowledge, which can be optimized collaboratively in the FL framework. Extensive experiments are conducted on endoscopic and pathological images with the comparison under the homogeneous, heterogeneous, and real-world label noise for medical FL. Among these diverse noisy FL settings, our FedGP framework significantly outperforms denoising and noisy FL state-of-the-arts by a large margin. The source code is available at https://github.com/CUHK-AIM-Group/FedGP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高高平蝶发布了新的文献求助10
1秒前
1秒前
2秒前
淡淡的康完成签到,获得积分10
2秒前
原大宝完成签到,获得积分20
3秒前
山竹完成签到,获得积分20
4秒前
小马甲应助无风采纳,获得10
5秒前
7秒前
景妙海发布了新的文献求助10
7秒前
天天快乐应助xiaomu采纳,获得10
7秒前
余红发布了新的文献求助10
7秒前
8秒前
8秒前
大蜥蜴完成签到,获得积分10
8秒前
9秒前
山竹发布了新的文献求助30
9秒前
诚c完成签到,获得积分10
10秒前
10秒前
13秒前
13秒前
蔡浩宇发布了新的文献求助10
13秒前
Yanyu发布了新的文献求助20
13秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得100
14秒前
浮游应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
wanci应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
今后应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
桐桐应助科研通管家采纳,获得10
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181903
求助须知:如何正确求助?哪些是违规求助? 4368718
关于积分的说明 13604064
捐赠科研通 4220153
什么是DOI,文献DOI怎么找? 2314485
邀请新用户注册赠送积分活动 1313185
关于科研通互助平台的介绍 1261882