A novel group multi-criteria sorting approach integrating social network analysis for ability assessment of health rumor-refutation accounts

谣言 分类 计算机科学 分类 社会化媒体 模糊逻辑 数据挖掘 数据科学 运筹学 人工智能 情报检索 自然语言处理 数学 算法 万维网 法学 政治学
作者
Mengzi Yin,Liyi Liu,Linqi Cheng,Zongmin Li,Yan Tu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121894-121894 被引量:6
标识
DOI:10.1016/j.eswa.2023.121894
摘要

Blooming social media platforms provide breeding ground for health rumors. Despite the establishment of accounts by numerous organizations to counter health rumors, the effectiveness of these endeavors exhibits considerable variability. Thus, there exists a pressing need to refine the framework and operation of rumor-refutation accounts. Aiming at enhancing the proficiency of accounts in refuting health rumors on social media platforms and exploring the factors affecting it, this paper proposes a novel group multi-criteria sorting approach integrating social network analysis (SNA) to classify accounts' health rumor-refutation ability. To commence, an evaluation indicator system for accounts' health rumor-refutation ability is established using SNA. Subsequently, the indicator values are computed, incorporating methods such as triangular fuzzy number (TFN), a lite bert (ALBERT) pre-trained language model, and PageRank. Furthermore, hesitant fuzzy linguistic term set (HFLTS) and triangular intuitionistic fuzzy number (TIFN) are used to determine the expert weights and indicator weights. After that, on the basis of original best worst method-sort (BWM-Sort), classification boundaries are discovered creatively using optimal clustering (OC), and minimum discrimination information (MDI) is adopted as the objective function for priority assignment. Consequently, an OC-MDI-BWM-Sort method is newly proposed which offers distinct advantages in computational efficiency, information integration, decision-making objectivity, and result effectiveness. Lastly, regarding to four cases of widely circulated rumors, health rumor-refutation ability of 35 accounts on Weibo platform is classified using the proposed method. The findings underscore that merely 8.57% of accounts exhibit stable and good health rumor-refutation ability, while up to 28.57% and 80.00% display poor and inconsistent ability in certain instances. Tailored to accounts with excellent or good, satisfactory or fair, and poor health rumor-refutation ability, respectively, managerial suggestions are provided regarding information expression standards, account operator proficiency, and account cooperation, and all accounts are advised to watch audience behavior.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiuqiu0999发布了新的文献求助10
1秒前
Qzf发布了新的文献求助30
1秒前
1秒前
1秒前
思源应助穆子涵采纳,获得10
2秒前
abcd发布了新的文献求助10
2秒前
山水之乐发布了新的文献求助20
4秒前
dn完成签到,获得积分20
4秒前
麦豆腐德完成签到,获得积分10
4秒前
小姚完成签到,获得积分20
5秒前
Juyy完成签到,获得积分10
5秒前
搜集达人应助Fifisheep采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
小张发布了新的文献求助10
6秒前
小二郎应助wuxifan采纳,获得10
6秒前
Jasper应助努力科研采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
Mininine完成签到 ,获得积分10
7秒前
Hello应助TaoTaooooII采纳,获得10
7秒前
Yanjun发布了新的文献求助10
7秒前
隐形曼青应助yue采纳,获得10
8秒前
欣慰的夏彤给开朗的尔风的求助进行了留言
8秒前
伍秋望发布了新的文献求助10
8秒前
你好完成签到,获得积分10
9秒前
Arafat发布了新的文献求助10
11秒前
roy完成签到,获得积分10
13秒前
阔达的疾发布了新的文献求助10
13秒前
13秒前
完美砖家完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
17秒前
细心书包完成签到 ,获得积分10
18秒前
大胆傲芙发布了新的文献求助10
18秒前
氯吡格蕾完成签到,获得积分10
18秒前
穆子涵发布了新的文献求助10
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771037
求助须知:如何正确求助?哪些是违规求助? 5589257
关于积分的说明 15426419
捐赠科研通 4904429
什么是DOI,文献DOI怎么找? 2638747
邀请新用户注册赠送积分活动 1586546
关于科研通互助平台的介绍 1541706