A novel group multi-criteria sorting approach integrating social network analysis for ability assessment of health rumor-refutation accounts

谣言 分类 计算机科学 分类 社会化媒体 模糊逻辑 数据挖掘 数据科学 运筹学 人工智能 情报检索 自然语言处理 数学 算法 万维网 法学 政治学
作者
Mengzi Yin,Liyi Liu,Linqi Cheng,Zongmin Li,Yan Tu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121894-121894 被引量:4
标识
DOI:10.1016/j.eswa.2023.121894
摘要

Blooming social media platforms provide breeding ground for health rumors. Despite the establishment of accounts by numerous organizations to counter health rumors, the effectiveness of these endeavors exhibits considerable variability. Thus, there exists a pressing need to refine the framework and operation of rumor-refutation accounts. Aiming at enhancing the proficiency of accounts in refuting health rumors on social media platforms and exploring the factors affecting it, this paper proposes a novel group multi-criteria sorting approach integrating social network analysis (SNA) to classify accounts' health rumor-refutation ability. To commence, an evaluation indicator system for accounts' health rumor-refutation ability is established using SNA. Subsequently, the indicator values are computed, incorporating methods such as triangular fuzzy number (TFN), a lite bert (ALBERT) pre-trained language model, and PageRank. Furthermore, hesitant fuzzy linguistic term set (HFLTS) and triangular intuitionistic fuzzy number (TIFN) are used to determine the expert weights and indicator weights. After that, on the basis of original best worst method-sort (BWM-Sort), classification boundaries are discovered creatively using optimal clustering (OC), and minimum discrimination information (MDI) is adopted as the objective function for priority assignment. Consequently, an OC-MDI-BWM-Sort method is newly proposed which offers distinct advantages in computational efficiency, information integration, decision-making objectivity, and result effectiveness. Lastly, regarding to four cases of widely circulated rumors, health rumor-refutation ability of 35 accounts on Weibo platform is classified using the proposed method. The findings underscore that merely 8.57% of accounts exhibit stable and good health rumor-refutation ability, while up to 28.57% and 80.00% display poor and inconsistent ability in certain instances. Tailored to accounts with excellent or good, satisfactory or fair, and poor health rumor-refutation ability, respectively, managerial suggestions are provided regarding information expression standards, account operator proficiency, and account cooperation, and all accounts are advised to watch audience behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
方格发布了新的文献求助10
1秒前
美好斓发布了新的文献求助30
1秒前
2秒前
时生111发布了新的文献求助10
2秒前
不安青牛应助lilililili采纳,获得30
3秒前
orixero应助郭储能采纳,获得10
3秒前
从容芮应助科研通管家采纳,获得10
4秒前
夏天完成签到,获得积分10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
zhouling完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得20
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
5秒前
从容芮应助科研通管家采纳,获得50
5秒前
5秒前
5秒前
俞永康kane发布了新的文献求助50
6秒前
Andrea发布了新的文献求助10
6秒前
善学以致用应助研友_n0QYAZ采纳,获得10
6秒前
流川枫完成签到,获得积分10
7秒前
8秒前
9秒前
楠楠完成签到,获得积分10
12秒前
cong315发布了新的文献求助10
12秒前
天天快乐应助天行采纳,获得10
13秒前
13秒前
明天发布了新的文献求助10
14秒前
michael_xu关注了科研通微信公众号
15秒前
汉堡完成签到,获得积分10
15秒前
15秒前
甜蜜代曼发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150106
求助须知:如何正确求助?哪些是违规求助? 2801212
关于积分的说明 7843671
捐赠科研通 2458704
什么是DOI,文献DOI怎么找? 1308586
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721