A novel group multi-criteria sorting approach integrating social network analysis for ability assessment of health rumor-refutation accounts

谣言 分类 计算机科学 分类 社会化媒体 模糊逻辑 数据挖掘 数据科学 运筹学 人工智能 情报检索 自然语言处理 数学 算法 万维网 法学 政治学
作者
Mengzi Yin,Liyi Liu,Linqi Cheng,Zongmin Li,Yan Tu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121894-121894 被引量:6
标识
DOI:10.1016/j.eswa.2023.121894
摘要

Blooming social media platforms provide breeding ground for health rumors. Despite the establishment of accounts by numerous organizations to counter health rumors, the effectiveness of these endeavors exhibits considerable variability. Thus, there exists a pressing need to refine the framework and operation of rumor-refutation accounts. Aiming at enhancing the proficiency of accounts in refuting health rumors on social media platforms and exploring the factors affecting it, this paper proposes a novel group multi-criteria sorting approach integrating social network analysis (SNA) to classify accounts' health rumor-refutation ability. To commence, an evaluation indicator system for accounts' health rumor-refutation ability is established using SNA. Subsequently, the indicator values are computed, incorporating methods such as triangular fuzzy number (TFN), a lite bert (ALBERT) pre-trained language model, and PageRank. Furthermore, hesitant fuzzy linguistic term set (HFLTS) and triangular intuitionistic fuzzy number (TIFN) are used to determine the expert weights and indicator weights. After that, on the basis of original best worst method-sort (BWM-Sort), classification boundaries are discovered creatively using optimal clustering (OC), and minimum discrimination information (MDI) is adopted as the objective function for priority assignment. Consequently, an OC-MDI-BWM-Sort method is newly proposed which offers distinct advantages in computational efficiency, information integration, decision-making objectivity, and result effectiveness. Lastly, regarding to four cases of widely circulated rumors, health rumor-refutation ability of 35 accounts on Weibo platform is classified using the proposed method. The findings underscore that merely 8.57% of accounts exhibit stable and good health rumor-refutation ability, while up to 28.57% and 80.00% display poor and inconsistent ability in certain instances. Tailored to accounts with excellent or good, satisfactory or fair, and poor health rumor-refutation ability, respectively, managerial suggestions are provided regarding information expression standards, account operator proficiency, and account cooperation, and all accounts are advised to watch audience behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿晓晓完成签到,获得积分10
刚刚
刚刚
1秒前
沉默是金发布了新的文献求助10
1秒前
1秒前
小黄鱼儿应助卜卜脆采纳,获得10
2秒前
gyhmm完成签到,获得积分10
2秒前
忐忑的邑完成签到,获得积分10
2秒前
2秒前
Dream完成签到,获得积分10
2秒前
Yuan发布了新的文献求助10
3秒前
小许完成签到 ,获得积分10
3秒前
orixero应助小吴采纳,获得10
3秒前
JamesPei应助hyhyhyhy采纳,获得10
3秒前
4秒前
一切都好完成签到,获得积分10
4秒前
无奈梦岚发布了新的文献求助10
5秒前
liaoliaoliao完成签到,获得积分10
5秒前
PP超人完成签到,获得积分20
5秒前
syrrr要发文章完成签到 ,获得积分10
6秒前
zhy发布了新的文献求助10
6秒前
丘比特应助葫芦家二娃采纳,获得10
6秒前
舒心的完成签到,获得积分10
6秒前
思源应助果子采纳,获得10
6秒前
winwin完成签到,获得积分10
7秒前
1111发布了新的文献求助10
7秒前
大个应助满月张采纳,获得10
7秒前
心媛完成签到 ,获得积分10
7秒前
65623132完成签到,获得积分10
7秒前
hhh发布了新的文献求助10
7秒前
bob发布了新的文献求助10
8秒前
z.发布了新的文献求助10
9秒前
9秒前
科研通AI5应助权于你采纳,获得10
9秒前
9秒前
细腻的惜儿完成签到 ,获得积分10
9秒前
9秒前
9秒前
hkh发布了新的文献求助10
10秒前
含蓄含烟完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3700765
求助须知:如何正确求助?哪些是违规求助? 3251047
关于积分的说明 9872817
捐赠科研通 2963115
什么是DOI,文献DOI怎么找? 1624972
邀请新用户注册赠送积分活动 769625
科研通“疑难数据库(出版商)”最低求助积分说明 742423