A novel group multi-criteria sorting approach integrating social network analysis for ability assessment of health rumor-refutation accounts

谣言 分类 计算机科学 分类 社会化媒体 模糊逻辑 数据挖掘 数据科学 运筹学 人工智能 情报检索 自然语言处理 数学 算法 万维网 法学 政治学
作者
Mengzi Yin,Liyi Liu,Linqi Cheng,Zongmin Li,Yan Tu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121894-121894 被引量:6
标识
DOI:10.1016/j.eswa.2023.121894
摘要

Blooming social media platforms provide breeding ground for health rumors. Despite the establishment of accounts by numerous organizations to counter health rumors, the effectiveness of these endeavors exhibits considerable variability. Thus, there exists a pressing need to refine the framework and operation of rumor-refutation accounts. Aiming at enhancing the proficiency of accounts in refuting health rumors on social media platforms and exploring the factors affecting it, this paper proposes a novel group multi-criteria sorting approach integrating social network analysis (SNA) to classify accounts' health rumor-refutation ability. To commence, an evaluation indicator system for accounts' health rumor-refutation ability is established using SNA. Subsequently, the indicator values are computed, incorporating methods such as triangular fuzzy number (TFN), a lite bert (ALBERT) pre-trained language model, and PageRank. Furthermore, hesitant fuzzy linguistic term set (HFLTS) and triangular intuitionistic fuzzy number (TIFN) are used to determine the expert weights and indicator weights. After that, on the basis of original best worst method-sort (BWM-Sort), classification boundaries are discovered creatively using optimal clustering (OC), and minimum discrimination information (MDI) is adopted as the objective function for priority assignment. Consequently, an OC-MDI-BWM-Sort method is newly proposed which offers distinct advantages in computational efficiency, information integration, decision-making objectivity, and result effectiveness. Lastly, regarding to four cases of widely circulated rumors, health rumor-refutation ability of 35 accounts on Weibo platform is classified using the proposed method. The findings underscore that merely 8.57% of accounts exhibit stable and good health rumor-refutation ability, while up to 28.57% and 80.00% display poor and inconsistent ability in certain instances. Tailored to accounts with excellent or good, satisfactory or fair, and poor health rumor-refutation ability, respectively, managerial suggestions are provided regarding information expression standards, account operator proficiency, and account cooperation, and all accounts are advised to watch audience behavior.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HaroldNguyen完成签到,获得积分10
2秒前
呆鸥完成签到 ,获得积分10
4秒前
yx完成签到 ,获得积分10
11秒前
gy79210完成签到,获得积分10
11秒前
云峤完成签到 ,获得积分10
11秒前
大吱吱完成签到,获得积分10
13秒前
haishuixing2完成签到,获得积分10
17秒前
科研大满贯完成签到 ,获得积分10
33秒前
xinL完成签到,获得积分10
36秒前
阿亮86完成签到,获得积分10
36秒前
39秒前
T1unkillable完成签到,获得积分10
43秒前
43秒前
mao完成签到 ,获得积分10
45秒前
zero桥完成签到,获得积分10
48秒前
伶俐海安完成签到 ,获得积分10
48秒前
T1unkillable发布了新的文献求助10
49秒前
Ferry完成签到 ,获得积分10
53秒前
优雅含灵完成签到 ,获得积分10
53秒前
pancake完成签到,获得积分10
55秒前
yutingemail完成签到 ,获得积分10
56秒前
任性翠安完成签到 ,获得积分10
1分钟前
包容明辉完成签到 ,获得积分10
1分钟前
1分钟前
银河灰烬发布了新的文献求助10
1分钟前
fanzi完成签到 ,获得积分10
1分钟前
整齐的惮完成签到 ,获得积分10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
d_fishier完成签到 ,获得积分10
1分钟前
chenjiaye完成签到 ,获得积分10
1分钟前
花卷完成签到,获得积分10
1分钟前
1分钟前
沈家兴完成签到 ,获得积分10
1分钟前
ECHO完成签到,获得积分10
1分钟前
铭宇完成签到,获得积分10
1分钟前
研友_VZG7GZ应助lzy303886采纳,获得10
1分钟前
Hello应助Omni采纳,获得10
1分钟前
负责以山完成签到 ,获得积分10
1分钟前
铭宇发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650012
关于积分的说明 14689486
捐赠科研通 4591896
什么是DOI,文献DOI怎么找? 2519388
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463136