A novel group multi-criteria sorting approach integrating social network analysis for ability assessment of health rumor-refutation accounts

谣言 分类 计算机科学 分类 社会化媒体 模糊逻辑 数据挖掘 数据科学 运筹学 人工智能 情报检索 自然语言处理 数学 算法 万维网 法学 政治学
作者
Mengzi Yin,Liyi Liu,Linqi Cheng,Zongmin Li,Yan Tu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121894-121894 被引量:6
标识
DOI:10.1016/j.eswa.2023.121894
摘要

Blooming social media platforms provide breeding ground for health rumors. Despite the establishment of accounts by numerous organizations to counter health rumors, the effectiveness of these endeavors exhibits considerable variability. Thus, there exists a pressing need to refine the framework and operation of rumor-refutation accounts. Aiming at enhancing the proficiency of accounts in refuting health rumors on social media platforms and exploring the factors affecting it, this paper proposes a novel group multi-criteria sorting approach integrating social network analysis (SNA) to classify accounts' health rumor-refutation ability. To commence, an evaluation indicator system for accounts' health rumor-refutation ability is established using SNA. Subsequently, the indicator values are computed, incorporating methods such as triangular fuzzy number (TFN), a lite bert (ALBERT) pre-trained language model, and PageRank. Furthermore, hesitant fuzzy linguistic term set (HFLTS) and triangular intuitionistic fuzzy number (TIFN) are used to determine the expert weights and indicator weights. After that, on the basis of original best worst method-sort (BWM-Sort), classification boundaries are discovered creatively using optimal clustering (OC), and minimum discrimination information (MDI) is adopted as the objective function for priority assignment. Consequently, an OC-MDI-BWM-Sort method is newly proposed which offers distinct advantages in computational efficiency, information integration, decision-making objectivity, and result effectiveness. Lastly, regarding to four cases of widely circulated rumors, health rumor-refutation ability of 35 accounts on Weibo platform is classified using the proposed method. The findings underscore that merely 8.57% of accounts exhibit stable and good health rumor-refutation ability, while up to 28.57% and 80.00% display poor and inconsistent ability in certain instances. Tailored to accounts with excellent or good, satisfactory or fair, and poor health rumor-refutation ability, respectively, managerial suggestions are provided regarding information expression standards, account operator proficiency, and account cooperation, and all accounts are advised to watch audience behavior.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助wsy采纳,获得10
刚刚
QUPY发布了新的文献求助10
刚刚
酷波er应助阿宋采纳,获得10
1秒前
6367发布了新的文献求助10
2秒前
qiwei完成签到 ,获得积分10
2秒前
Akim应助Thrain采纳,获得10
3秒前
Aha完成签到 ,获得积分10
3秒前
4秒前
4秒前
隐形曼青应助发发发采纳,获得10
5秒前
6秒前
无极微光应助ywjkeyantong采纳,获得20
6秒前
zhang完成签到,获得积分10
6秒前
xingxing完成签到 ,获得积分10
7秒前
7秒前
奋斗完成签到,获得积分20
7秒前
7秒前
在水一方应助神仙鱼recept采纳,获得10
8秒前
8秒前
顾矜应助何书易采纳,获得10
8秒前
8秒前
8秒前
李健的小迷弟应助孙伟健采纳,获得10
10秒前
Thrain完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
volition发布了新的文献求助10
12秒前
liiiiiii发布了新的文献求助10
12秒前
12秒前
奋斗发布了新的文献求助10
13秒前
Up完成签到,获得积分10
13秒前
心楠发布了新的文献求助30
13秒前
绿竹发布了新的文献求助10
14秒前
酷波er应助林飞云采纳,获得10
14秒前
14秒前
15秒前
LEO完成签到,获得积分10
16秒前
16秒前
做科研的小施同学完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601126
求助须知:如何正确求助?哪些是违规求助? 4686631
关于积分的说明 14845345
捐赠科研通 4679752
什么是DOI,文献DOI怎么找? 2539214
邀请新用户注册赠送积分活动 1506081
关于科研通互助平台的介绍 1471266