A novel group multi-criteria sorting approach integrating social network analysis for ability assessment of health rumor-refutation accounts

谣言 分类 计算机科学 分类 社会化媒体 模糊逻辑 数据挖掘 数据科学 运筹学 人工智能 情报检索 自然语言处理 数学 算法 万维网 法学 政治学
作者
Mengzi Yin,Liyi Liu,Linqi Cheng,Zongmin Li,Yan Tu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121894-121894 被引量:6
标识
DOI:10.1016/j.eswa.2023.121894
摘要

Blooming social media platforms provide breeding ground for health rumors. Despite the establishment of accounts by numerous organizations to counter health rumors, the effectiveness of these endeavors exhibits considerable variability. Thus, there exists a pressing need to refine the framework and operation of rumor-refutation accounts. Aiming at enhancing the proficiency of accounts in refuting health rumors on social media platforms and exploring the factors affecting it, this paper proposes a novel group multi-criteria sorting approach integrating social network analysis (SNA) to classify accounts' health rumor-refutation ability. To commence, an evaluation indicator system for accounts' health rumor-refutation ability is established using SNA. Subsequently, the indicator values are computed, incorporating methods such as triangular fuzzy number (TFN), a lite bert (ALBERT) pre-trained language model, and PageRank. Furthermore, hesitant fuzzy linguistic term set (HFLTS) and triangular intuitionistic fuzzy number (TIFN) are used to determine the expert weights and indicator weights. After that, on the basis of original best worst method-sort (BWM-Sort), classification boundaries are discovered creatively using optimal clustering (OC), and minimum discrimination information (MDI) is adopted as the objective function for priority assignment. Consequently, an OC-MDI-BWM-Sort method is newly proposed which offers distinct advantages in computational efficiency, information integration, decision-making objectivity, and result effectiveness. Lastly, regarding to four cases of widely circulated rumors, health rumor-refutation ability of 35 accounts on Weibo platform is classified using the proposed method. The findings underscore that merely 8.57% of accounts exhibit stable and good health rumor-refutation ability, while up to 28.57% and 80.00% display poor and inconsistent ability in certain instances. Tailored to accounts with excellent or good, satisfactory or fair, and poor health rumor-refutation ability, respectively, managerial suggestions are provided regarding information expression standards, account operator proficiency, and account cooperation, and all accounts are advised to watch audience behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
幽默的涵山关注了科研通微信公众号
刚刚
炙热棉花糖完成签到,获得积分10
1秒前
LMFY发布了新的文献求助10
2秒前
科研通AI6应助凤凰院凶真采纳,获得10
2秒前
脑洞疼应助JINtian采纳,获得10
2秒前
小米发布了新的文献求助10
2秒前
Army616完成签到,获得积分10
2秒前
ding应助暴躁的振家采纳,获得10
2秒前
3秒前
任性的咖啡完成签到,获得积分20
3秒前
4秒前
满意涵梅完成签到 ,获得积分10
6秒前
nancy发布了新的文献求助10
7秒前
闾丘剑封发布了新的文献求助10
7秒前
看不懂发布了新的文献求助10
8秒前
wsl完成签到 ,获得积分10
8秒前
梅子完成签到 ,获得积分10
8秒前
能干听枫发布了新的文献求助10
8秒前
orixero应助王方明采纳,获得40
8秒前
科研通AI6应助路宝采纳,获得10
8秒前
勤奋火龙果完成签到,获得积分10
9秒前
9秒前
聪明绝顶完成签到,获得积分10
10秒前
11秒前
风语过完成签到,获得积分10
12秒前
13秒前
墨殇璃发布了新的文献求助10
13秒前
共享精神应助无聊的黄豆采纳,获得10
14秒前
晴天完成签到 ,获得积分10
14秒前
大模型应助神秘猎牛人采纳,获得10
14秒前
123完成签到,获得积分10
16秒前
激动烦凡完成签到,获得积分10
16秒前
ding应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
sevenhill应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495000
求助须知:如何正确求助?哪些是违规求助? 4592747
关于积分的说明 14438605
捐赠科研通 4525605
什么是DOI,文献DOI怎么找? 2479542
邀请新用户注册赠送积分活动 1464339
关于科研通互助平台的介绍 1437256