已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A knowledge graph-supported information fusion approach for multi-faceted conceptual modelling

计算机科学 概念图 数据挖掘 图形 概念模型 领域知识 知识图 领域(数学分析) 理论计算机科学 情报检索 人工智能 知识表示与推理 数据库 数学 数学分析
作者
Zhenyuan Chen,Yuwei Wan,Ying Liu,Agustin Valera‐Medina
出处
期刊:Information Fusion [Elsevier]
卷期号:101: 101985-101985 被引量:22
标识
DOI:10.1016/j.inffus.2023.101985
摘要

It has become progressively more evident that a single data source is unable to comprehensively capture the variability of a multi-faceted concept, such as product design, driving behaviour or human trust, which has diverse semantic orientations. Therefore, multi-faceted conceptual modelling is often conducted based on multi-sourced data covering indispensable aspects, and information fusion is frequently applied to cope with the high dimensionality and data heterogeneity. The consideration of intra-facets relationships is also indispensable. In this context, a knowledge graph (KG), which can aggregate the relationships of multiple aspects by semantic associations, was exploited to facilitate the multi-faceted conceptual modelling based on heterogeneous and semantic-rich data. Firstly, rules of fault mechanism are extracted from the existing domain knowledge repository, and node attributes are extracted from multi-sourced data. Through abstraction and tokenisation of existing knowledge repository and concept-centric data, rules of fault mechanism were symbolised and integrated with the node attributes, which served as the entities for the concept-centric knowledge graph (CKG). Subsequently, the transformation of process data to a stack of temporal graphs was conducted under the CKG backbone. Lastly, the graph convolutional network (GCN) model was applied to extract temporal and attribute correlation features from the graphs, and a temporal convolution network (TCN) was built for conceptual modelling using these features. The effectiveness of the proposed approach and the close synergy between the KG-supported approach and multi-faceted conceptual modelling is demonstrated and substantiated in a case study using real-world data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐的清发布了新的文献求助10
1秒前
三分发布了新的文献求助10
1秒前
2秒前
隐形曼青应助小屁孩采纳,获得30
2秒前
英姑应助哇哇卡哇采纳,获得10
2秒前
陶醉的羞花完成签到,获得积分10
2秒前
JamesPei应助Darcy采纳,获得10
3秒前
4秒前
呈安一丁发布了新的文献求助10
6秒前
科科完成签到,获得积分20
6秒前
天天快乐应助清脆的大开采纳,获得10
7秒前
可爱的函函应助何丽雅采纳,获得10
7秒前
染然苒冉发布了新的文献求助10
8秒前
8秒前
自信人生二百年完成签到 ,获得积分10
9秒前
朱志伟发布了新的文献求助10
11秒前
Akim应助青杉杉采纳,获得10
11秒前
是木易呀发布了新的文献求助30
12秒前
13秒前
Akim应助怕孤独的长颈鹿采纳,获得10
13秒前
三分发布了新的文献求助10
13秒前
pilgrim应助和谐的清采纳,获得10
14秒前
Miriammmmm完成签到,获得积分10
16秒前
科研通AI6应助科科采纳,获得10
18秒前
平常亦凝发布了新的文献求助10
18秒前
QXZ1完成签到,获得积分10
19秒前
研友_VZG7GZ应助小怪物采纳,获得10
19秒前
19秒前
hodi完成签到,获得积分10
20秒前
大龙哥886应助ali777采纳,获得10
21秒前
22秒前
王大壮完成签到,获得积分10
23秒前
小蘑菇应助yu_xie采纳,获得100
23秒前
farewell发布了新的文献求助20
24秒前
EliGolden完成签到,获得积分10
25秒前
三分发布了新的文献求助10
25秒前
浮游应助车宇采纳,获得10
25秒前
疯度发布了新的文献求助10
26秒前
染然苒冉发布了新的文献求助20
27秒前
灵巧的仙人掌完成签到,获得积分20
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400986
求助须知:如何正确求助?哪些是违规求助? 4520031
关于积分的说明 14077904
捐赠科研通 4432951
什么是DOI,文献DOI怎么找? 2433919
邀请新用户注册赠送积分活动 1426111
关于科研通互助平台的介绍 1404733