A knowledge graph-supported information fusion approach for multi-faceted conceptual modelling

计算机科学 概念图 数据挖掘 图形 概念模型 领域知识 知识图 领域(数学分析) 理论计算机科学 情报检索 人工智能 知识表示与推理 数据库 数学 数学分析
作者
Zhenyuan Chen,Yuwei Wan,Ying Liu,Agustin Valera‐Medina
出处
期刊:Information Fusion [Elsevier]
卷期号:101: 101985-101985 被引量:22
标识
DOI:10.1016/j.inffus.2023.101985
摘要

It has become progressively more evident that a single data source is unable to comprehensively capture the variability of a multi-faceted concept, such as product design, driving behaviour or human trust, which has diverse semantic orientations. Therefore, multi-faceted conceptual modelling is often conducted based on multi-sourced data covering indispensable aspects, and information fusion is frequently applied to cope with the high dimensionality and data heterogeneity. The consideration of intra-facets relationships is also indispensable. In this context, a knowledge graph (KG), which can aggregate the relationships of multiple aspects by semantic associations, was exploited to facilitate the multi-faceted conceptual modelling based on heterogeneous and semantic-rich data. Firstly, rules of fault mechanism are extracted from the existing domain knowledge repository, and node attributes are extracted from multi-sourced data. Through abstraction and tokenisation of existing knowledge repository and concept-centric data, rules of fault mechanism were symbolised and integrated with the node attributes, which served as the entities for the concept-centric knowledge graph (CKG). Subsequently, the transformation of process data to a stack of temporal graphs was conducted under the CKG backbone. Lastly, the graph convolutional network (GCN) model was applied to extract temporal and attribute correlation features from the graphs, and a temporal convolution network (TCN) was built for conceptual modelling using these features. The effectiveness of the proposed approach and the close synergy between the KG-supported approach and multi-faceted conceptual modelling is demonstrated and substantiated in a case study using real-world data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
易安发布了新的文献求助30
刚刚
无花果应助穆荃采纳,获得10
刚刚
怪小咖完成签到,获得积分10
1秒前
nikaido完成签到,获得积分10
1秒前
1秒前
2秒前
CodeCraft应助alon采纳,获得10
2秒前
xxx完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
3秒前
充电宝应助陈曦读研版采纳,获得10
3秒前
吗喽完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
god13less完成签到,获得积分10
6秒前
7秒前
达拉斯发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
Lora发布了新的文献求助10
9秒前
刘铠瑜发布了新的文献求助10
10秒前
Liu完成签到,获得积分10
11秒前
11秒前
怕黑蜜蜂发布了新的文献求助10
12秒前
party12发布了新的文献求助10
12秒前
12秒前
阿飞完成签到,获得积分10
12秒前
12秒前
13秒前
wgt完成签到,获得积分10
13秒前
girl发布了新的文献求助10
14秒前
14秒前
14秒前
YHL发布了新的文献求助30
15秒前
16秒前
16秒前
嘟嘟嘟嘟完成签到,获得积分10
16秒前
Murphy完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775480
求助须知:如何正确求助?哪些是违规求助? 5624445
关于积分的说明 15438830
捐赠科研通 4907762
什么是DOI,文献DOI怎么找? 2640954
邀请新用户注册赠送积分活动 1588765
关于科研通互助平台的介绍 1543627