亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A knowledge graph-supported information fusion approach for multi-faceted conceptual modelling

计算机科学 概念图 数据挖掘 图形 概念模型 领域知识 知识图 领域(数学分析) 理论计算机科学 情报检索 人工智能 知识表示与推理 数据库 数学 数学分析
作者
Zhenyuan Chen,Yuwei Wan,Ying Liu,Agustin Valera‐Medina
出处
期刊:Information Fusion [Elsevier]
卷期号:101: 101985-101985 被引量:22
标识
DOI:10.1016/j.inffus.2023.101985
摘要

It has become progressively more evident that a single data source is unable to comprehensively capture the variability of a multi-faceted concept, such as product design, driving behaviour or human trust, which has diverse semantic orientations. Therefore, multi-faceted conceptual modelling is often conducted based on multi-sourced data covering indispensable aspects, and information fusion is frequently applied to cope with the high dimensionality and data heterogeneity. The consideration of intra-facets relationships is also indispensable. In this context, a knowledge graph (KG), which can aggregate the relationships of multiple aspects by semantic associations, was exploited to facilitate the multi-faceted conceptual modelling based on heterogeneous and semantic-rich data. Firstly, rules of fault mechanism are extracted from the existing domain knowledge repository, and node attributes are extracted from multi-sourced data. Through abstraction and tokenisation of existing knowledge repository and concept-centric data, rules of fault mechanism were symbolised and integrated with the node attributes, which served as the entities for the concept-centric knowledge graph (CKG). Subsequently, the transformation of process data to a stack of temporal graphs was conducted under the CKG backbone. Lastly, the graph convolutional network (GCN) model was applied to extract temporal and attribute correlation features from the graphs, and a temporal convolution network (TCN) was built for conceptual modelling using these features. The effectiveness of the proposed approach and the close synergy between the KG-supported approach and multi-faceted conceptual modelling is demonstrated and substantiated in a case study using real-world data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
真实的瑾瑜完成签到 ,获得积分10
7秒前
烟花应助Marshall采纳,获得10
11秒前
fenghao完成签到,获得积分10
15秒前
29秒前
matrixu完成签到,获得积分10
31秒前
32秒前
34秒前
研友发布了新的文献求助10
35秒前
Marshall发布了新的文献求助10
37秒前
38秒前
劉浏琉应助科研通管家采纳,获得10
39秒前
劉浏琉应助科研通管家采纳,获得10
39秒前
qqx应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
luohao完成签到,获得积分10
43秒前
chenaio发布了新的文献求助10
45秒前
orixero应助研友采纳,获得10
46秒前
大模型应助善良的花菜采纳,获得10
48秒前
积极盼晴完成签到,获得积分10
53秒前
小夜子完成签到 ,获得积分10
54秒前
chenaio完成签到,获得积分10
1分钟前
1分钟前
1分钟前
情怀应助yunshui采纳,获得10
1分钟前
aaa发布了新的文献求助10
1分钟前
凉的白开完成签到,获得积分10
1分钟前
andrele发布了新的文献求助10
1分钟前
和风完成签到 ,获得积分10
1分钟前
CCS完成签到 ,获得积分10
1分钟前
SCI的芷蝶完成签到 ,获得积分10
2分钟前
2分钟前
aaa发布了新的文献求助10
2分钟前
自由岛发布了新的文献求助10
2分钟前
酷波er应助科研小白采纳,获得10
2分钟前
2分钟前
斯文败类应助aaa采纳,获得10
2分钟前
MCCCCC_6发布了新的文献求助10
2分钟前
michael完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788346
求助须知:如何正确求助?哪些是违规求助? 5706422
关于积分的说明 15473418
捐赠科研通 4916427
什么是DOI,文献DOI怎么找? 2646333
邀请新用户注册赠送积分活动 1593998
关于科研通互助平台的介绍 1548436