已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A knowledge graph-supported information fusion approach for multi-faceted conceptual modelling

计算机科学 概念图 数据挖掘 图形 概念模型 领域知识 知识图 领域(数学分析) 理论计算机科学 情报检索 人工智能 知识表示与推理 数据库 数学分析 数学
作者
Zhenyuan Chen,Yuwei Wan,Ying Liu,Agustin Valera‐Medina
出处
期刊:Information Fusion [Elsevier BV]
卷期号:101: 101985-101985 被引量:22
标识
DOI:10.1016/j.inffus.2023.101985
摘要

It has become progressively more evident that a single data source is unable to comprehensively capture the variability of a multi-faceted concept, such as product design, driving behaviour or human trust, which has diverse semantic orientations. Therefore, multi-faceted conceptual modelling is often conducted based on multi-sourced data covering indispensable aspects, and information fusion is frequently applied to cope with the high dimensionality and data heterogeneity. The consideration of intra-facets relationships is also indispensable. In this context, a knowledge graph (KG), which can aggregate the relationships of multiple aspects by semantic associations, was exploited to facilitate the multi-faceted conceptual modelling based on heterogeneous and semantic-rich data. Firstly, rules of fault mechanism are extracted from the existing domain knowledge repository, and node attributes are extracted from multi-sourced data. Through abstraction and tokenisation of existing knowledge repository and concept-centric data, rules of fault mechanism were symbolised and integrated with the node attributes, which served as the entities for the concept-centric knowledge graph (CKG). Subsequently, the transformation of process data to a stack of temporal graphs was conducted under the CKG backbone. Lastly, the graph convolutional network (GCN) model was applied to extract temporal and attribute correlation features from the graphs, and a temporal convolution network (TCN) was built for conceptual modelling using these features. The effectiveness of the proposed approach and the close synergy between the KG-supported approach and multi-faceted conceptual modelling is demonstrated and substantiated in a case study using real-world data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
点点完成签到 ,获得积分10
1秒前
zjx发布了新的文献求助10
2秒前
Adian完成签到,获得积分10
3秒前
桌子不齐邓紫棋完成签到,获得积分20
3秒前
科研通AI6应助吴雨茜采纳,获得10
7秒前
大个应助自己个儿采纳,获得10
10秒前
赘婿应助辛勤的志泽采纳,获得10
11秒前
12秒前
Aha完成签到 ,获得积分10
13秒前
16秒前
16秒前
16秒前
许晴完成签到 ,获得积分10
17秒前
Fjj完成签到,获得积分10
19秒前
啾啾发布了新的文献求助100
19秒前
moiaoh完成签到,获得积分10
21秒前
21秒前
23秒前
27秒前
科研通AI5应助啾啾采纳,获得10
29秒前
胡一刀完成签到,获得积分10
30秒前
dreamboat完成签到,获得积分10
31秒前
31秒前
梁梁完成签到 ,获得积分10
33秒前
33秒前
沉静乾发布了新的文献求助10
33秒前
34秒前
36秒前
梁海萍发布了新的文献求助10
36秒前
EKo完成签到,获得积分10
37秒前
情怀应助zjx采纳,获得10
37秒前
畅快枕头完成签到 ,获得积分0
38秒前
SciHub完成签到 ,获得积分10
38秒前
草莓熊1215完成签到 ,获得积分10
39秒前
彭于晏应助科研通管家采纳,获得10
40秒前
bkagyin应助科研通管家采纳,获得10
40秒前
FashionBoy应助科研通管家采纳,获得10
40秒前
40秒前
爆米花应助科研通管家采纳,获得30
40秒前
李文豪发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4925756
求助须知:如何正确求助?哪些是违规求助? 4195911
关于积分的说明 13031268
捐赠科研通 3967492
什么是DOI,文献DOI怎么找? 2174627
邀请新用户注册赠送积分活动 1191845
关于科研通互助平台的介绍 1101628