A knowledge graph-supported information fusion approach for multi-faceted conceptual modelling

计算机科学 概念图 数据挖掘 图形 概念模型 领域知识 知识图 领域(数学分析) 理论计算机科学 情报检索 人工智能 知识表示与推理 数据库 数学 数学分析
作者
Zhenyuan Chen,Y Wan,Ying Liu,Agustin Valera‐Medina
出处
期刊:Information Fusion [Elsevier]
卷期号:101: 101985-101985 被引量:16
标识
DOI:10.1016/j.inffus.2023.101985
摘要

It has become progressively more evident that a single data source is unable to comprehensively capture the variability of a multi-faceted concept, such as product design, driving behaviour or human trust, which has diverse semantic orientations. Therefore, multi-faceted conceptual modelling is often conducted based on multi-sourced data covering indispensable aspects, and information fusion is frequently applied to cope with the high dimensionality and data heterogeneity. The consideration of intra-facets relationships is also indispensable. In this context, a knowledge graph (KG), which can aggregate the relationships of multiple aspects by semantic associations, was exploited to facilitate the multi-faceted conceptual modelling based on heterogeneous and semantic-rich data. Firstly, rules of fault mechanism are extracted from the existing domain knowledge repository, and node attributes are extracted from multi-sourced data. Through abstraction and tokenisation of existing knowledge repository and concept-centric data, rules of fault mechanism were symbolised and integrated with the node attributes, which served as the entities for the concept-centric knowledge graph (CKG). Subsequently, the transformation of process data to a stack of temporal graphs was conducted under the CKG backbone. Lastly, the graph convolutional network (GCN) model was applied to extract temporal and attribute correlation features from the graphs, and a temporal convolution network (TCN) was built for conceptual modelling using these features. The effectiveness of the proposed approach and the close synergy between the KG-supported approach and multi-faceted conceptual modelling is demonstrated and substantiated in a case study using real-world data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
云中子发布了新的文献求助10
1秒前
栗子完成签到 ,获得积分10
1秒前
隐形曼青应助AY采纳,获得10
1秒前
小钱全完成签到,获得积分10
1秒前
1秒前
小蘑菇发布了新的文献求助50
3秒前
坚强亦丝应助喜洋羊采纳,获得10
4秒前
虞头星星发布了新的文献求助10
4秒前
bxw发布了新的文献求助10
4秒前
天天快乐应助2393843435采纳,获得10
5秒前
852应助傲娇的诗兰采纳,获得10
5秒前
cherhon发布了新的文献求助10
5秒前
崔噔噔发布了新的文献求助10
6秒前
lei应助容若采纳,获得10
6秒前
泛泛之交发布了新的文献求助10
6秒前
怕孤独的飞飞完成签到,获得积分10
7秒前
盖斯的可言完成签到,获得积分10
7秒前
8秒前
Whim完成签到,获得积分10
10秒前
10秒前
科研通AI5应助云中子采纳,获得10
11秒前
11秒前
11秒前
11秒前
danti完成签到,获得积分10
12秒前
12秒前
12秒前
安静复天完成签到,获得积分10
12秒前
筱星完成签到,获得积分10
12秒前
13秒前
天天快乐应助一念初见采纳,获得10
13秒前
13秒前
飘逸千万关注了科研通微信公众号
14秒前
神说应助枫绣采纳,获得20
14秒前
wjx发布了新的文献求助30
14秒前
情怀应助星语花采纳,获得10
16秒前
007发布了新的文献求助10
16秒前
Mizoresuki应助留胡子的书桃采纳,获得10
16秒前
研友_VZG7GZ应助bxw采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564065
求助须知:如何正确求助?哪些是违规求助? 3137276
关于积分的说明 9421653
捐赠科研通 2837658
什么是DOI,文献DOI怎么找? 1559942
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717215