已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A knowledge graph-supported information fusion approach for multi-faceted conceptual modelling

计算机科学 概念图 数据挖掘 图形 概念模型 领域知识 知识图 领域(数学分析) 理论计算机科学 情报检索 人工智能 知识表示与推理 数据库 数学 数学分析
作者
Zhenyuan Chen,Yuwei Wan,Ying Liu,Agustin Valera‐Medina
出处
期刊:Information Fusion [Elsevier BV]
卷期号:101: 101985-101985 被引量:22
标识
DOI:10.1016/j.inffus.2023.101985
摘要

It has become progressively more evident that a single data source is unable to comprehensively capture the variability of a multi-faceted concept, such as product design, driving behaviour or human trust, which has diverse semantic orientations. Therefore, multi-faceted conceptual modelling is often conducted based on multi-sourced data covering indispensable aspects, and information fusion is frequently applied to cope with the high dimensionality and data heterogeneity. The consideration of intra-facets relationships is also indispensable. In this context, a knowledge graph (KG), which can aggregate the relationships of multiple aspects by semantic associations, was exploited to facilitate the multi-faceted conceptual modelling based on heterogeneous and semantic-rich data. Firstly, rules of fault mechanism are extracted from the existing domain knowledge repository, and node attributes are extracted from multi-sourced data. Through abstraction and tokenisation of existing knowledge repository and concept-centric data, rules of fault mechanism were symbolised and integrated with the node attributes, which served as the entities for the concept-centric knowledge graph (CKG). Subsequently, the transformation of process data to a stack of temporal graphs was conducted under the CKG backbone. Lastly, the graph convolutional network (GCN) model was applied to extract temporal and attribute correlation features from the graphs, and a temporal convolution network (TCN) was built for conceptual modelling using these features. The effectiveness of the proposed approach and the close synergy between the KG-supported approach and multi-faceted conceptual modelling is demonstrated and substantiated in a case study using real-world data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静的绿竹完成签到 ,获得积分10
1秒前
希望天下0贩的0应助张涛采纳,获得10
2秒前
3秒前
所所应助玛卡巴卡采纳,获得10
4秒前
Owen应助玛卡巴卡采纳,获得10
4秒前
科研通AI6应助15359015265采纳,获得10
4秒前
星辰大海应助玛卡巴卡采纳,获得10
4秒前
Jasper应助玛卡巴卡采纳,获得10
4秒前
NexusExplorer应助玛卡巴卡采纳,获得10
4秒前
汉堡包应助玛卡巴卡采纳,获得10
5秒前
Akim应助玛卡巴卡采纳,获得10
5秒前
打打应助玛卡巴卡采纳,获得10
5秒前
小杭76应助玛卡巴卡采纳,获得10
5秒前
bkagyin应助玛卡巴卡采纳,获得10
5秒前
6秒前
图图医完成签到,获得积分10
6秒前
8秒前
9秒前
俏皮的安萱完成签到 ,获得积分10
10秒前
RR发布了新的文献求助10
10秒前
啊哦应助玛卡巴卡采纳,获得10
11秒前
11秒前
龅牙苏发布了新的文献求助10
13秒前
beloved完成签到 ,获得积分10
13秒前
14秒前
花花123发布了新的文献求助10
15秒前
科研通AI6应助李琼琼采纳,获得10
15秒前
16秒前
我是老大应助鲤鱼越越采纳,获得10
17秒前
kkk完成签到,获得积分10
17秒前
龅牙苏完成签到,获得积分10
18秒前
乐乐应助总是烂结局采纳,获得10
18秒前
当麻发布了新的文献求助10
19秒前
搜集达人应助花花123采纳,获得10
19秒前
搞怪从波完成签到 ,获得积分10
24秒前
24秒前
Bystander完成签到 ,获得积分10
25秒前
26秒前
搞怪从波关注了科研通微信公众号
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252897
求助须知:如何正确求助?哪些是违规求助? 4416496
关于积分的说明 13749852
捐赠科研通 4288649
什么是DOI,文献DOI怎么找? 2353022
邀请新用户注册赠送积分活动 1349787
关于科研通互助平台的介绍 1309434