A deep reinforcement learning framework for dynamic optimization of numerical schemes for compressible flow simulations

计算机科学 强化学习 消散 流量(数学) 截断(统计) 压缩性 比例(比率) 应用数学 数学优化 统计物理学 算法 机械 人工智能 数学 物理 机器学习 量子力学 热力学
作者
Yiqi Feng,Felix S. Schranner,Josef Winter,Nikolaus A. Adams
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:493: 112436-112436 被引量:8
标识
DOI:10.1016/j.jcp.2023.112436
摘要

Marginal or under-resolved simulations of compressible flow configurations that often occur in practical applications classically are enabled by administering sufficient numerical dissipation to keep the simulation stable. Such measures, however, often are physically inconsistent due to non-selectively altering of dynamics across scales. Sustaining physically consistent large scale dynamics requires the numerical solution to effectively model non-resolved small scale dynamics. In this work, we propose a general deep-reinforcement-learning framework for devising an agent to interact with high-resolution scheme in order to balance dissipation and dispersion such that physically consistent modeling of non-resolved scales is achieved. A densely distributed reward function without involving labeled data is defined. The agent is trained on low-resolution uniform grids that capture the dominant flow structures. We demonstrate that it can be applied directly to high-resolution simulations without the need for retraining or fine-tuning, thereby, demonstrating significantly improved modeling performance compared to empirically designed high-resolution schemes. The proposed methodology opens a new path for self-adaptive numerical solutions whose truncation errors act as physically consistent model for unresolved scales of widely differing flow configurations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
xiaoqianqian174完成签到,获得积分10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
fifteen应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得30
2秒前
orixero应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得30
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
3秒前
3秒前
Akim应助科研通管家采纳,获得10
3秒前
3秒前
keaijun发布了新的文献求助10
3秒前
zh发布了新的文献求助30
4秒前
魏星铃发布了新的文献求助10
5秒前
5秒前
milly完成签到,获得积分10
5秒前
尼i完成签到,获得积分10
6秒前
阿Q发布了新的文献求助10
6秒前
丘比特应助玛璃鸶采纳,获得10
6秒前
6秒前
咯咯咯咯完成签到,获得积分10
7秒前
开放夏旋发布了新的文献求助10
8秒前
李健应助已老实采纳,获得10
8秒前
lc发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546792
求助须知:如何正确求助?哪些是违规求助? 3977943
关于积分的说明 12317707
捐赠科研通 3646410
什么是DOI,文献DOI怎么找? 2008137
邀请新用户注册赠送积分活动 1043717
科研通“疑难数据库(出版商)”最低求助积分说明 932388