Combining standoff tomography with point detection: a game changer for the identification of airborne toxic chemicals

鉴定(生物学) 点(几何) 计算机科学 遥感 计算机视觉 人工智能 环境科学 地质学 数学 植物 几何学 生物
作者
Frank Wilsenack,Maria Allers,Fabian Meyer,Thomas Wolf,Torbjörn Tjärnhage,Lars Landström,Arne Ficks
标识
DOI:10.1117/12.3013427
摘要

Volatile chemicals can form expansive toxic gas clouds after an accidental or deliberate large-scale release. The emerging toxic clouds may be invisible to the optical spectrum of the bare eye, but they are generally detectable using suitable standoff or point detectors. Standoff detectors are particularly suited for monitoring a large area within their line of sight, whereas remotely controlled point detectors may be used to survey specific areas of strategic interest. A favorable spatial and temporal detection resolution is usually achieved using standoff Fourier Transform Infrared (FTIR) spectrometers. To obtain a proper spatial resolution beyond a mere imaging view, at least two imaging systems must operate concurrently with an adequate opening angle concerning the distance of reconnaissance. During a field trial in Umeå, Sweden, we utilized an appropriate setup for standoff tomography to detect and identify comparatively small-scale chemical releases of gaseous substances and evaporating aerosols. We reached high resolutions in space and time at a standoff distance of over a kilometer. Thus, we have shown that a targeted early warning and short response times for emerging threats are possible while operators remain at a safe location. Additionally, the field trial revealed the significant influence of the properties and concentration of the deployed chemicals, wind shear, and turbulence on the detection result. In support of spatially and temporally resolved standoff detection, targeted drones carrying fast and sensitive point detectors, such as ion mobility spectrometers, may be used as an orthogonal technique to independently confirm identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊啊啊发布了新的文献求助10
刚刚
sc发布了新的文献求助10
刚刚
yy发布了新的文献求助30
刚刚
无名氏发布了新的文献求助10
刚刚
1秒前
artoria完成签到,获得积分10
1秒前
cc关闭了cc文献求助
1秒前
VDoo完成签到,获得积分10
1秒前
2秒前
2秒前
踏实口红完成签到,获得积分10
2秒前
失眠的煎饼完成签到,获得积分20
3秒前
xide发布了新的文献求助10
3秒前
haha发布了新的文献求助10
3秒前
霸的彤完成签到,获得积分10
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
村上种树发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
玉米完成签到,获得积分10
6秒前
6秒前
iNk发布了新的文献求助30
7秒前
霸的彤发布了新的文献求助10
7秒前
科研通AI6应助michael采纳,获得30
7秒前
8秒前
8秒前
8秒前
M123完成签到,获得积分10
9秒前
1947188918完成签到,获得积分10
9秒前
Hwchaodoctor完成签到,获得积分10
10秒前
wwww发布了新的文献求助10
10秒前
阿猫完成签到,获得积分20
10秒前
朱宣诚发布了新的文献求助10
10秒前
577发布了新的文献求助10
10秒前
刘雨然发布了新的文献求助10
10秒前
ding应助ghtsmile采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667488
求助须知:如何正确求助?哪些是违规求助? 4886195
关于积分的说明 15120469
捐赠科研通 4826311
什么是DOI,文献DOI怎么找? 2583920
邀请新用户注册赠送积分活动 1537973
关于科研通互助平台的介绍 1496095