Machine Learning: a new era for cardiovascular pregnancy physiology and cardio-obstetrics research

怀孕 医学 重症监护医学 分娩 后代 产科 可解释性 生物信息学 生理学 计算机科学 生物 遗传学 机器学习
作者
Contessa A. Ricci,Benjamin Crysup,Nicole Phillips,William C. Ray,Mark K. Santillan,Aaron J. Trask,August E. Woerner,Styliani Goulopoulou
出处
期刊:American Journal of Physiology-heart and Circulatory Physiology [American Physical Society]
卷期号:327 (2): H417-H432
标识
DOI:10.1152/ajpheart.00149.2024
摘要

The maternal cardiovascular system undergoes functional and structural adaptations during pregnancy and postpartum to support increased metabolic demands of offspring and placental growth, labor, and delivery, as well as recovery from childbirth. Thus, pregnancy imposes physiological stress upon the maternal cardiovascular system, and in the absence of an appropriate response it imparts potential risks for cardiovascular complications and adverse outcomes. The proportion of pregnancy-related maternal deaths from cardiovascular events has been steadily increasing, contributing to high rates of maternal mortality. Despite advances in cardiovascular physiology research, there is still no comprehensive understanding of maternal cardiovascular adaptations in healthy pregnancies. Furthermore, current approaches for the prognosis of cardiovascular complications during pregnancy are limited. Machine learning (ML) offers new and effective tools for investigating mechanisms involved in pregnancy-related cardiovascular complications as well as the development of potential therapies. The main goal of this review is to summarize existing research that uses ML to understand mechanisms of cardiovascular physiology during pregnancy and develop prediction models for clinical application in pregnant patients. We also provide an overview of ML platforms that can be used to comprehensively understand cardiovascular adaptations to pregnancy and discuss the interpretability of ML outcomes, the consequences of model bias, and the importance of ethical consideration in ML use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cooper完成签到,获得积分10
刚刚
安详的断缘完成签到,获得积分10
1秒前
踏实无敌应助快乐凌寒采纳,获得30
1秒前
Negan完成签到,获得积分10
1秒前
飞飞飞飞飞完成签到,获得积分10
1秒前
2秒前
2秒前
Kilig完成签到,获得积分20
2秒前
亿眼万年完成签到,获得积分10
2秒前
共享精神应助shimly0101xx采纳,获得10
3秒前
茉莉园完成签到,获得积分10
3秒前
fanpengzhen完成签到,获得积分10
3秒前
启程发布了新的文献求助10
3秒前
科研达人完成签到,获得积分10
3秒前
3秒前
冯点点应助LCX采纳,获得10
3秒前
taco完成签到 ,获得积分10
4秒前
jm完成签到,获得积分10
4秒前
Don完成签到 ,获得积分10
4秒前
夕阳昏红完成签到,获得积分10
5秒前
hhhhhhmt完成签到,获得积分10
5秒前
勤奋曼雁完成签到,获得积分10
5秒前
烈火与勇气完成签到,获得积分10
5秒前
完美世界应助leyi采纳,获得10
5秒前
5秒前
6秒前
Aqua完成签到,获得积分10
7秒前
米丫丫米完成签到 ,获得积分10
7秒前
安详怀蕾发布了新的文献求助20
7秒前
黄黄完成签到,获得积分0
7秒前
dropofwater完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
加油完成签到 ,获得积分10
8秒前
9秒前
jm发布了新的文献求助10
9秒前
丰富的不惜完成签到,获得积分10
9秒前
wwwjqw完成签到,获得积分10
9秒前
9秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746550
求助须知:如何正确求助?哪些是违规求助? 3289414
关于积分的说明 10064441
捐赠科研通 3005751
什么是DOI,文献DOI怎么找? 1650393
邀请新用户注册赠送积分活动 785863
科研通“疑难数据库(出版商)”最低求助积分说明 751335