Comparative Analysis of Microstructure, Electrical and Optical Performance in Sidewall Etching Process for GaN-Based Green Micro-LED

材料科学 阴极发光 光致发光 光电子学 微观结构 四甲基氢氧化铵 开尔文探针力显微镜 量子效率 发光二极管 透射电子显微镜 悬空债券 蚀刻(微加工) 发光 纳米技术 复合材料 图层(电子) 原子力显微镜
作者
X. Li,Xujun Su,Guobin Wang,Jingjing Chen,Lühua Wang,Wentao Song,Ke Xu
出处
期刊:Journal of Physics D [IOP Publishing]
标识
DOI:10.1088/1361-6463/ad55f9
摘要

Abstract Micro-LEDs show the size-dependent external quantum efficiency (EQE) reduction problem, mainly owing to increased non-radiative recombination loss at the sidewall for smaller chip size. In this work, the evolution of microstructure, surface potential and optical performance of the green micro-LED sidewall was investigated comparatively after inductively coupled plasma (ICP) and tetramethylammonium hydroxide (TMAH) etching through transmission electron microscopy (TEM), Kelvin probe force microscope (KPFM), cathodoluminescence (CL) and time-resolved photoluminescence (TRPL). As confirmed by TEM and geometric phase analysis (GPA), ICP etching causes sidewalls to form atomically rough semi-polar surfaces and increases 25% compressive strain at the sidewall compared to the inside. TMAH solution introduces new sidewall defects due to excessive etching of three atomic layers of InGaN. Holes accumulate at the surface because of build-in electric field as showd by KPFM. The sidewall defects lead to a decrease in carrier lifetime resulting in uneven luminescence of micro-LED mesa. TMAH treatment removes the damaged layer and reduces the non-radiative recombination rate. ICP causes damage to the nanoscale structure, however the influence of sidewall defects on the carrier behavior is in the micron range due to unavoidable surface dangling bonds and surface lattice relaxation. A non-radiative recombination mechanism is proposed based on strain relaxation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Yang完成签到,获得积分10
2秒前
2秒前
3秒前
一一发布了新的文献求助10
3秒前
4秒前
5秒前
平常康完成签到,获得积分10
5秒前
斯文败类应助务实小土豆采纳,获得30
5秒前
安静无招发布了新的文献求助10
5秒前
Lucas应助沉默的羔手采纳,获得10
5秒前
小核桃发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
9秒前
爆米花应助顺利兰采纳,获得10
10秒前
10秒前
蟹老板发布了新的文献求助10
11秒前
12秒前
13秒前
15秒前
16秒前
洋葱最可爱完成签到 ,获得积分10
16秒前
王鹏程发布了新的文献求助10
16秒前
17秒前
17秒前
当归完成签到,获得积分10
17秒前
vmformation发布了新的文献求助10
17秒前
17秒前
可爱的函函应助yu采纳,获得10
18秒前
18秒前
19秒前
SciGPT应助愈加沉稳采纳,获得10
20秒前
香蕉觅云应助平淡的半青采纳,获得10
21秒前
万能图书馆应助88采纳,获得10
21秒前
22秒前
22秒前
23秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Photosynthesis III 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3071500
求助须知:如何正确求助?哪些是违规求助? 2725527
关于积分的说明 7489890
捐赠科研通 2372698
什么是DOI,文献DOI怎么找? 1258220
科研通“疑难数据库(出版商)”最低求助积分说明 610233
版权声明 596916