Early screening and staging of melanoma using blood based on laser-induced breakdown spectroscopy

激光诱导击穿光谱 阿达布思 黑色素瘤 Boosting(机器学习) 医学 内科学 人工智能 肿瘤科 支持向量机 激光器 计算机科学 癌症研究 物理 光学
作者
Zhifang Zhao,Xiangjun Xu,Mengyu Bao,Yongyue Zheng,Tianzhong Luo,Bingheng Lu,Geer Teng,Qianqian Wang,Muhammad Nouman Khan,Jun Yong
出处
期刊:Microchemical Journal [Elsevier]
卷期号:203: 110955-110955 被引量:2
标识
DOI:10.1016/j.microc.2024.110955
摘要

For melanoma, early screening could increase the cure rate, while staging helps to make treatment strategies. Blood sampling has advantages of little damage, convenient operation and low cost, which combined with laser-induced breakdown spectroscopy (LIBS) has been utilized for tumor diagnoses. Here, we proposed to accurately attain early screening and staging of melanoma blood using LIBS. The serum was collected from 25 melanoma mice and 10 healthy controls on the 7th, 14th, 21st and 28th days. Compared with k nearest neighbor (kNN), support vector machine (SVM) and back propagation neural network (BPNN) models, the adaptive boosting of BPNN (BP_AdaBoost) models had the best accuracies of 83.37 % for early screening and 96.18 % for staging, respectively. Using mutual information (MI) method to select features, the accuracies of BP_AdaBoost models were improved to 86.11 % for early screening and 96.91 % for staging, respectively. Besides, the difference significance of elements and molecular bands in the serum was examined by the Kruskal-Wallis (K-W) test. The test results showed that obvious differences of Ca and Na existed in both early screening and staging, while K and Mg made significant differences in staging, consistent with roles of Ca and Na in the whole process of tumor development and roles of K and Mg in tumor proliferation and metastasis. Overall, all results demonstrated that early screening and staging of melanoma could be accurately realized using blood based on LIBS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
didi完成签到,获得积分10
1秒前
三人行完成签到,获得积分10
1秒前
KeldonHuang完成签到,获得积分10
1秒前
1秒前
Morris完成签到,获得积分10
1秒前
1秒前
Dgr完成签到,获得积分10
1秒前
2秒前
小二郎应助小5采纳,获得10
2秒前
传奇3应助chaofan采纳,获得10
2秒前
3秒前
粗暴的背包完成签到,获得积分10
3秒前
3秒前
从容白羊完成签到,获得积分10
3秒前
东方元语应助张哈哈采纳,获得20
3秒前
虚心求学完成签到,获得积分10
3秒前
3秒前
小邹完成签到,获得积分10
4秒前
慕青应助朴素浩然采纳,获得10
4秒前
平淡沛蓝完成签到 ,获得积分10
4秒前
桐桐应助芷莯采纳,获得10
5秒前
杨子航发布了新的文献求助10
5秒前
杨昌琪发布了新的文献求助10
5秒前
虎桔发布了新的文献求助10
5秒前
Zhangxinhao发布了新的文献求助10
6秒前
今后应助韩明轩采纳,获得10
6秒前
我来文献求助了完成签到,获得积分10
6秒前
欢呼的丁真完成签到,获得积分10
6秒前
迟梦琪发布了新的文献求助10
6秒前
不安的采白完成签到,获得积分10
6秒前
汉堡包应助阿修罗采纳,获得10
6秒前
6秒前
深海渔完成签到,获得积分20
7秒前
8秒前
王WJ发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472789
求助须知:如何正确求助?哪些是违规求助? 4575000
关于积分的说明 14349787
捐赠科研通 4502378
什么是DOI,文献DOI怎么找? 2467070
邀请新用户注册赠送积分活动 1455052
关于科研通互助平台的介绍 1429246