Early screening and staging of melanoma using blood based on laser-induced breakdown spectroscopy

激光诱导击穿光谱 阿达布思 黑色素瘤 Boosting(机器学习) 医学 内科学 人工智能 肿瘤科 支持向量机 激光器 计算机科学 癌症研究 物理 光学
作者
Zhifang Zhao,Xiangjun Xu,Mengyu Bao,Yongyue Zheng,Tianzhong Luo,Bingheng Lu,Geer Teng,Qianqian Wang,Muhammad Nouman Khan,Jun Yong
出处
期刊:Microchemical Journal [Elsevier]
卷期号:203: 110955-110955 被引量:2
标识
DOI:10.1016/j.microc.2024.110955
摘要

For melanoma, early screening could increase the cure rate, while staging helps to make treatment strategies. Blood sampling has advantages of little damage, convenient operation and low cost, which combined with laser-induced breakdown spectroscopy (LIBS) has been utilized for tumor diagnoses. Here, we proposed to accurately attain early screening and staging of melanoma blood using LIBS. The serum was collected from 25 melanoma mice and 10 healthy controls on the 7th, 14th, 21st and 28th days. Compared with k nearest neighbor (kNN), support vector machine (SVM) and back propagation neural network (BPNN) models, the adaptive boosting of BPNN (BP_AdaBoost) models had the best accuracies of 83.37 % for early screening and 96.18 % for staging, respectively. Using mutual information (MI) method to select features, the accuracies of BP_AdaBoost models were improved to 86.11 % for early screening and 96.91 % for staging, respectively. Besides, the difference significance of elements and molecular bands in the serum was examined by the Kruskal-Wallis (K-W) test. The test results showed that obvious differences of Ca and Na existed in both early screening and staging, while K and Mg made significant differences in staging, consistent with roles of Ca and Na in the whole process of tumor development and roles of K and Mg in tumor proliferation and metastasis. Overall, all results demonstrated that early screening and staging of melanoma could be accurately realized using blood based on LIBS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好好发布了新的文献求助10
刚刚
华仔应助jjsss采纳,获得10
1秒前
深情安青应助明芬采纳,获得10
1秒前
2秒前
2秒前
王一琳发布了新的文献求助10
2秒前
小张发布了新的文献求助10
4秒前
5秒前
5秒前
社会议和发布了新的文献求助10
6秒前
jjsss完成签到,获得积分10
6秒前
7秒前
JamesPei应助一个饼采纳,获得30
7秒前
8秒前
明明完成签到,获得积分10
8秒前
CodeCraft应助小马采纳,获得10
9秒前
夏自完成签到,获得积分10
9秒前
黎明之光发布了新的文献求助20
10秒前
otaro发布了新的文献求助10
10秒前
chenjun7080发布了新的文献求助10
11秒前
11秒前
一顿三大碗完成签到,获得积分10
12秒前
夏自发布了新的文献求助10
12秒前
13秒前
zZoeE发布了新的文献求助10
13秒前
13秒前
14秒前
小张完成签到,获得积分10
14秒前
明芬发布了新的文献求助10
16秒前
小库里2025完成签到 ,获得积分10
16秒前
Caojiaqi完成签到,获得积分10
16秒前
研友_Lw7MKL完成签到,获得积分10
17秒前
wangbq完成签到 ,获得积分10
18秒前
NY完成签到,获得积分10
19秒前
20秒前
21秒前
otaro完成签到,获得积分10
21秒前
21秒前
无花果应助momo采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308276
求助须知:如何正确求助?哪些是违规求助? 4453483
关于积分的说明 13857227
捐赠科研通 4341210
什么是DOI,文献DOI怎么找? 2383705
邀请新用户注册赠送积分活动 1378353
关于科研通互助平台的介绍 1346311