Single-Subject Deep-Learning Image Reconstruction with a Neural Optimization Transfer Algorithm for PET-enabled Dual-Energy CT Imaging

人工智能 迭代重建 计算机科学 计算机视觉 医学影像学 学习迁移 图像处理 人工神经网络 模式识别(心理学) 图像(数学) 算法
作者
S. B. Li,Yansong Zhu,Benjamin A. Spencer,Guobao Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4075-4089 被引量:1
标识
DOI:10.1109/tip.2024.3418347
摘要

Combining dual-energy computed tomography (DECT) with positron emission tomography (PET) offers many potential clinical applications but typically requires expensive hardware upgrades or increases radiation doses on PET/CT scanners due to an extra X-ray CT scan. The recent PET-enabled DECT method allows DECT imaging on PET/CT without requiring a second X-ray CT scan. It combines the already existing X-ray CT image with a 511 keV γ -ray CT (gCT) image reconstructed from time-of-flight PET emission data. A kernelized framework has been developed for reconstructing gCT image but this method has not fully exploited the potential of prior knowledge. Use of deep neural networks may explore the power of deep learning in this application. However, common approaches require a large database for training, which is impractical for a new imaging method like PET-enabled DECT. Here, we propose a single-subject method by using neural-network representation as a deep coefficient prior to improving gCT image reconstruction without population-based pre-training. The resulting optimization problem becomes the tomographic estimation of nonlinear neural-network parameters from gCT projection data. This complicated problem can be efficiently solved by utilizing the optimization transfer strategy with quadratic surrogates. Each iteration of the proposed neural optimization transfer algorithm includes: PET activity image update; gCT image update; and least-square neural-network learning in the gCT image domain. This algorithm is guaranteed to monotonically increase the data likelihood. Results from computer simulation, real phantom data and real patient data have demonstrated that the proposed method can significantly improve gCT image quality and consequent multi-material decomposition as compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
卓儿完成签到,获得积分10
1秒前
杏仁完成签到,获得积分10
2秒前
2秒前
潇湘夜雨发布了新的文献求助10
3秒前
道友且慢完成签到,获得积分10
3秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
木兰签完成签到,获得积分10
5秒前
Marciu33发布了新的文献求助10
6秒前
ffffffflzx666发布了新的文献求助10
8秒前
8秒前
Ray发布了新的文献求助10
8秒前
归尘发布了新的文献求助10
8秒前
9秒前
完美世界应助0015采纳,获得10
9秒前
Hello应助0015采纳,获得10
9秒前
YZF发布了新的文献求助10
12秒前
肖思林发布了新的文献求助10
12秒前
俭朴夜雪完成签到,获得积分10
15秒前
Huanglj完成签到,获得积分10
16秒前
shan完成签到,获得积分10
19秒前
20秒前
22秒前
Tian完成签到,获得积分10
22秒前
24秒前
xiahaobo完成签到,获得积分10
26秒前
Ascender发布了新的文献求助10
27秒前
revew666完成签到,获得积分10
28秒前
30秒前
30秒前
32秒前
小蘑菇应助yuedingta采纳,获得10
33秒前
动听千风发布了新的文献求助10
34秒前
34秒前
36秒前
zhuflyfly304关注了科研通微信公众号
38秒前
daisy发布了新的文献求助10
38秒前
酷波er应助Sunwenrui采纳,获得10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959759
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127457
捐赠科研通 3237969
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803019