Single-Subject Deep-Learning Image Reconstruction with a Neural Optimization Transfer Algorithm for PET-enabled Dual-Energy CT Imaging

人工智能 迭代重建 计算机科学 计算机视觉 医学影像学 学习迁移 图像处理 人工神经网络 模式识别(心理学) 图像(数学) 算法
作者
S. B. Li,Yansong Zhu,Benjamin A. Spencer,Guobao Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4075-4089 被引量:1
标识
DOI:10.1109/tip.2024.3418347
摘要

Combining dual-energy computed tomography (DECT) with positron emission tomography (PET) offers many potential clinical applications but typically requires expensive hardware upgrades or increases radiation doses on PET/CT scanners due to an extra X-ray CT scan. The recent PET-enabled DECT method allows DECT imaging on PET/CT without requiring a second X-ray CT scan. It combines the already existing X-ray CT image with a 511 keV γ -ray CT (gCT) image reconstructed from time-of-flight PET emission data. A kernelized framework has been developed for reconstructing gCT image but this method has not fully exploited the potential of prior knowledge. Use of deep neural networks may explore the power of deep learning in this application. However, common approaches require a large database for training, which is impractical for a new imaging method like PET-enabled DECT. Here, we propose a single-subject method by using neural-network representation as a deep coefficient prior to improving gCT image reconstruction without population-based pre-training. The resulting optimization problem becomes the tomographic estimation of nonlinear neural-network parameters from gCT projection data. This complicated problem can be efficiently solved by utilizing the optimization transfer strategy with quadratic surrogates. Each iteration of the proposed neural optimization transfer algorithm includes: PET activity image update; gCT image update; and least-square neural-network learning in the gCT image domain. This algorithm is guaranteed to monotonically increase the data likelihood. Results from computer simulation, real phantom data and real patient data have demonstrated that the proposed method can significantly improve gCT image quality and consequent multi-material decomposition as compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
野子完成签到,获得积分10
刚刚
情怀应助小D采纳,获得30
1秒前
yuan发布了新的文献求助10
1秒前
berry发布了新的文献求助10
2秒前
2秒前
淡淡采白发布了新的文献求助10
3秒前
思源应助勤恳慕蕊采纳,获得10
3秒前
知犯何逆完成签到 ,获得积分10
4秒前
啊哈完成签到,获得积分10
4秒前
5秒前
5秒前
Draven完成签到 ,获得积分10
5秒前
tmpstlml发布了新的文献求助10
6秒前
张红梨完成签到,获得积分10
6秒前
迷迷完成签到,获得积分20
7秒前
7秒前
科研通AI2S应助chen采纳,获得10
8秒前
穿山甲坐飞机完成签到 ,获得积分10
8秒前
9秒前
美丽的芷烟给美丽的芷烟的求助进行了留言
9秒前
科研通AI5应助经年采纳,获得10
9秒前
9秒前
勤劳晓亦应助木头人采纳,获得10
10秒前
科研通AI5应助想瘦的海豹采纳,获得10
10秒前
11秒前
科研通AI5应助adazbd采纳,获得10
11秒前
bkagyin应助皮皮桂采纳,获得10
11秒前
12秒前
重要的哈密瓜完成签到 ,获得积分10
12秒前
会飞的云完成签到 ,获得积分10
13秒前
13秒前
毕不了业的凡阿哥完成签到,获得积分10
13秒前
野子发布了新的文献求助10
13秒前
berry完成签到,获得积分10
14秒前
15秒前
LUNWENREQUEST发布了新的文献求助10
15秒前
大模型应助匹诺曹采纳,获得10
16秒前
ding应助过时的又槐采纳,获得10
17秒前
20秒前
鄙视注册完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808