Single-Subject Deep-Learning Image Reconstruction with a Neural Optimization Transfer Algorithm for PET-enabled Dual-Energy CT Imaging

人工智能 迭代重建 计算机科学 计算机视觉 医学影像学 学习迁移 图像处理 人工神经网络 模式识别(心理学) 图像(数学) 算法
作者
S. B. Li,Yansong Zhu,Benjamin A. Spencer,Guobao Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4075-4089 被引量:1
标识
DOI:10.1109/tip.2024.3418347
摘要

Combining dual-energy computed tomography (DECT) with positron emission tomography (PET) offers many potential clinical applications but typically requires expensive hardware upgrades or increases radiation doses on PET/CT scanners due to an extra X-ray CT scan. The recent PET-enabled DECT method allows DECT imaging on PET/CT without requiring a second X-ray CT scan. It combines the already existing X-ray CT image with a 511 keV γ -ray CT (gCT) image reconstructed from time-of-flight PET emission data. A kernelized framework has been developed for reconstructing gCT image but this method has not fully exploited the potential of prior knowledge. Use of deep neural networks may explore the power of deep learning in this application. However, common approaches require a large database for training, which is impractical for a new imaging method like PET-enabled DECT. Here, we propose a single-subject method by using neural-network representation as a deep coefficient prior to improving gCT image reconstruction without population-based pre-training. The resulting optimization problem becomes the tomographic estimation of nonlinear neural-network parameters from gCT projection data. This complicated problem can be efficiently solved by utilizing the optimization transfer strategy with quadratic surrogates. Each iteration of the proposed neural optimization transfer algorithm includes: PET activity image update; gCT image update; and least-square neural-network learning in the gCT image domain. This algorithm is guaranteed to monotonically increase the data likelihood. Results from computer simulation, real phantom data and real patient data have demonstrated that the proposed method can significantly improve gCT image quality and consequent multi-material decomposition as compared to other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
莫123发布了新的文献求助10
2秒前
李健应助单身的绮菱采纳,获得10
2秒前
3秒前
打打应助Hibiscus95采纳,获得10
3秒前
4秒前
5秒前
胖Q完成签到 ,获得积分20
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
liciky完成签到 ,获得积分10
8秒前
潘健康发布了新的文献求助10
8秒前
复杂的乐蕊完成签到,获得积分10
8秒前
Dave发布了新的文献求助10
8秒前
林一发布了新的文献求助10
10秒前
今后应助积极的老鼠采纳,获得10
10秒前
彭于晏应助yuhan采纳,获得10
10秒前
sin3xas4sin3x完成签到,获得积分10
11秒前
12秒前
上官若男应助Rosemary采纳,获得10
12秒前
Lim1819完成签到 ,获得积分10
13秒前
脑洞疼应助小胡爱科研采纳,获得10
13秒前
lin发布了新的文献求助20
14秒前
14秒前
17秒前
17秒前
Hibiscus95发布了新的文献求助10
19秒前
19秒前
zy177发布了新的文献求助10
20秒前
20秒前
AN应助小明采纳,获得10
21秒前
Elan完成签到 ,获得积分10
22秒前
xxxx发布了新的文献求助30
22秒前
77发布了新的文献求助10
24秒前
yuhan发布了新的文献求助10
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879