Single-Subject Deep-Learning Image Reconstruction with a Neural Optimization Transfer Algorithm for PET-enabled Dual-Energy CT Imaging

人工智能 迭代重建 计算机科学 计算机视觉 医学影像学 学习迁移 图像处理 人工神经网络 模式识别(心理学) 图像(数学) 算法
作者
S. B. Li,Yansong Zhu,Benjamin A. Spencer,Guobao Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4075-4089 被引量:1
标识
DOI:10.1109/tip.2024.3418347
摘要

Combining dual-energy computed tomography (DECT) with positron emission tomography (PET) offers many potential clinical applications but typically requires expensive hardware upgrades or increases radiation doses on PET/CT scanners due to an extra X-ray CT scan. The recent PET-enabled DECT method allows DECT imaging on PET/CT without requiring a second X-ray CT scan. It combines the already existing X-ray CT image with a 511 keV γ -ray CT (gCT) image reconstructed from time-of-flight PET emission data. A kernelized framework has been developed for reconstructing gCT image but this method has not fully exploited the potential of prior knowledge. Use of deep neural networks may explore the power of deep learning in this application. However, common approaches require a large database for training, which is impractical for a new imaging method like PET-enabled DECT. Here, we propose a single-subject method by using neural-network representation as a deep coefficient prior to improving gCT image reconstruction without population-based pre-training. The resulting optimization problem becomes the tomographic estimation of nonlinear neural-network parameters from gCT projection data. This complicated problem can be efficiently solved by utilizing the optimization transfer strategy with quadratic surrogates. Each iteration of the proposed neural optimization transfer algorithm includes: PET activity image update; gCT image update; and least-square neural-network learning in the gCT image domain. This algorithm is guaranteed to monotonically increase the data likelihood. Results from computer simulation, real phantom data and real patient data have demonstrated that the proposed method can significantly improve gCT image quality and consequent multi-material decomposition as compared to other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
仇谷槐发布了新的文献求助10
1秒前
科研通AI2S应助耍酷的海秋采纳,获得10
2秒前
ding应助只只采纳,获得10
3秒前
小猫炒饭完成签到,获得积分10
3秒前
来因完成签到,获得积分10
4秒前
4秒前
打打应助伊莱恩采纳,获得10
4秒前
华仔应助幽幽采纳,获得10
6秒前
成就凡双应助旧时光采纳,获得10
6秒前
科研通AI6应助Always采纳,获得30
8秒前
8秒前
Xiaowen完成签到 ,获得积分10
8秒前
成就凡双应助拼搏的飞薇采纳,获得10
9秒前
10秒前
coffee发布了新的文献求助10
10秒前
上官若男应助张继豪采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
慕青应助nn采纳,获得10
11秒前
NOME完成签到,获得积分10
12秒前
zik应助伶俐的不尤采纳,获得10
14秒前
科研通AI6应助果茶不热采纳,获得30
15秒前
16秒前
Owen应助稳重的元瑶采纳,获得10
16秒前
17秒前
VV完成签到,获得积分10
17秒前
17秒前
cowmoon完成签到,获得积分10
18秒前
不帅气的小鱼完成签到,获得积分20
18秒前
18秒前
18秒前
18秒前
19秒前
20秒前
20秒前
cowmoon发布了新的文献求助30
22秒前
sophia完成签到,获得积分10
22秒前
仇谷槐完成签到,获得积分10
22秒前
impgod发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578694
求助须知:如何正确求助?哪些是违规求助? 4663478
关于积分的说明 14746840
捐赠科研通 4604380
什么是DOI,文献DOI怎么找? 2526940
邀请新用户注册赠送积分活动 1496508
关于科研通互助平台的介绍 1465823