Single-Subject Deep-Learning Image Reconstruction with a Neural Optimization Transfer Algorithm for PET-enabled Dual-Energy CT Imaging

人工智能 迭代重建 计算机科学 计算机视觉 医学影像学 学习迁移 图像处理 人工神经网络 模式识别(心理学) 图像(数学) 算法
作者
S. B. Li,Yansong Zhu,Benjamin A. Spencer,Guobao Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4075-4089 被引量:1
标识
DOI:10.1109/tip.2024.3418347
摘要

Combining dual-energy computed tomography (DECT) with positron emission tomography (PET) offers many potential clinical applications but typically requires expensive hardware upgrades or increases radiation doses on PET/CT scanners due to an extra X-ray CT scan. The recent PET-enabled DECT method allows DECT imaging on PET/CT without requiring a second X-ray CT scan. It combines the already existing X-ray CT image with a 511 keV γ -ray CT (gCT) image reconstructed from time-of-flight PET emission data. A kernelized framework has been developed for reconstructing gCT image but this method has not fully exploited the potential of prior knowledge. Use of deep neural networks may explore the power of deep learning in this application. However, common approaches require a large database for training, which is impractical for a new imaging method like PET-enabled DECT. Here, we propose a single-subject method by using neural-network representation as a deep coefficient prior to improving gCT image reconstruction without population-based pre-training. The resulting optimization problem becomes the tomographic estimation of nonlinear neural-network parameters from gCT projection data. This complicated problem can be efficiently solved by utilizing the optimization transfer strategy with quadratic surrogates. Each iteration of the proposed neural optimization transfer algorithm includes: PET activity image update; gCT image update; and least-square neural-network learning in the gCT image domain. This algorithm is guaranteed to monotonically increase the data likelihood. Results from computer simulation, real phantom data and real patient data have demonstrated that the proposed method can significantly improve gCT image quality and consequent multi-material decomposition as compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
敏er好学完成签到,获得积分10
3秒前
luffy完成签到 ,获得积分10
3秒前
wmz--SHNU发布了新的文献求助10
5秒前
打打应助清脆大树采纳,获得10
7秒前
7秒前
老西瓜发布了新的文献求助10
9秒前
丁鹏笑完成签到 ,获得积分0
9秒前
9秒前
大号完成签到,获得积分20
10秒前
10秒前
卫大公子完成签到,获得积分10
10秒前
李西瓜发布了新的文献求助10
11秒前
顺利丹烟发布了新的文献求助10
13秒前
锦云发布了新的文献求助10
14秒前
爱撒娇的以丹应助孙某人采纳,获得10
15秒前
wmz--SHNU完成签到,获得积分10
16秒前
搜集达人应助科研小白采纳,获得10
16秒前
iNk应助JCT采纳,获得10
18秒前
卫大公子发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
weiwei应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
研友_VZG7GZ应助科研通管家采纳,获得10
24秒前
镇痛蚊子发布了新的文献求助10
24秒前
Lucas应助科研通管家采纳,获得10
24秒前
大个应助科研通管家采纳,获得10
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
一方通行应助科研通管家采纳,获得30
25秒前
打打应助科研通管家采纳,获得10
25秒前
25秒前
桐桐应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
25秒前
26秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340955
求助须知:如何正确求助?哪些是违规求助? 2968764
关于积分的说明 8634886
捐赠科研通 2648259
什么是DOI,文献DOI怎么找? 1450110
科研通“疑难数据库(出版商)”最低求助积分说明 671711
邀请新用户注册赠送积分活动 660816