ResTrans‐Unet: A Residual‐Aware Transformer‐Based Approach to Medical Image Segmentation

计算机科学 图像分割 分割 人工智能 残余物 计算机视觉 算法
作者
Fengying Ma,Z. S. Wang,Peng Ji,Chengcai Fu,Feng Wang
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (4)
标识
DOI:10.1002/ima.23122
摘要

ABSTRACT The convolutional neural network has significantly enhanced the efficacy of medical image segmentation. However, challenges persist in the deep learning‐based method for medical image segmentation, necessitating the resolution of the following issues: (1) Medical images, characterized by a vast spatial scale and complex structure, pose difficulties in accurate edge information extraction; (2) In the decoding process, the assumption of equal importance among different channels contradicts the reality of their varying significance. This study addresses challenges observed in earlier medical image segmentation networks, particularly focusing on the precise extraction of edge information and the inadequate consideration of inter‐channel importance during decoding. To address these challenges, we introduce ResTrans‐Unet (residual transformer medical image segmentation network), an automatic segmentation model based on Residual‐aware transformer. The Transformer is enhanced through the incorporation of ResMLP, resulting in enhanced edge information capture in images and improved network convergence speed. Additionally, Squeeze‐and‐Excitation Networks, which emphasize channel relationships, are integrated into the decoder to precisely highlight important features and suppress irrelevant ones. Experimental validations on two public datasets were carried out to assess the proposed model, comparing its performance with that of advanced models. The experimental results unequivocally demonstrate the superior performance of ResTrans‐Unet in medical image segmentation tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyyxxxg发布了新的文献求助10
1秒前
18135175733完成签到 ,获得积分20
1秒前
2秒前
saker发布了新的文献求助10
2秒前
2秒前
3秒前
斯文败类应助草木采纳,获得10
3秒前
科研通AI2S应助开朗的又菱采纳,获得30
3秒前
4秒前
4秒前
aaronzhu1995完成签到 ,获得积分10
5秒前
6秒前
熊星星完成签到 ,获得积分10
7秒前
嘻嘻发布了新的文献求助10
7秒前
Singularity应助孙兆杰采纳,获得10
7秒前
小蘑菇应助doctoryuyu采纳,获得10
7秒前
成成发布了新的文献求助10
7秒前
小学生发布了新的文献求助10
7秒前
深情安青应助lll采纳,获得10
8秒前
调研昵称发布了新的文献求助10
9秒前
黙宇循光发布了新的文献求助10
11秒前
112发布了新的文献求助10
12秒前
充电宝应助xx采纳,获得10
13秒前
葡萄成熟应助PWG采纳,获得10
14秒前
LeiX发布了新的文献求助10
15秒前
15秒前
15秒前
fy完成签到,获得积分10
15秒前
orixero应助成成采纳,获得10
15秒前
15秒前
16秒前
hushan53发布了新的文献求助10
16秒前
聪仔发布了新的文献求助10
17秒前
yyw发布了新的文献求助100
18秒前
科研通AI2S应助草木采纳,获得10
18秒前
18秒前
WXY发布了新的文献求助10
19秒前
lu完成签到,获得积分10
20秒前
whisper应助wang采纳,获得10
21秒前
李理发布了新的文献求助10
21秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792710
关于积分的说明 7803941
捐赠科研通 2448986
什么是DOI,文献DOI怎么找? 1303011
科研通“疑难数据库(出版商)”最低求助积分说明 626717
版权声明 601244