Hire: Hybrid-modal Interaction with Multiple Relational Enhancements for Image-Text Matching

情态动词 匹配(统计) 图像(数学) 计算机科学 人工智能 情报检索 模式识别(心理学) 数学 化学 统计 高分子化学
作者
Xuri Ge,Fuhai Chen,Songpei Xu,Fuxiang Tao,Jie Wang,Joemon M. Jose
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.18579
摘要

Image-text matching (ITM) is a fundamental problem in computer vision. The key issue lies in jointly learning the visual and textual representation to estimate their similarity accurately. Most existing methods focus on feature enhancement within modality or feature interaction across modalities, which, however, neglects the contextual information of the object representation based on the inter-object relationships that match the corresponding sentences with rich contextual semantics. In this paper, we propose a Hybrid-modal Interaction with multiple Relational Enhancements (termed \textit{Hire}) for image-text matching, which correlates the intra- and inter-modal semantics between objects and words with implicit and explicit relationship modelling. In particular, the explicit intra-modal spatial-semantic graph-based reasoning network is designed to improve the contextual representation of visual objects with salient spatial and semantic relational connectivities, guided by the explicit relationships of the objects' spatial positions and their scene graph. We use implicit relationship modelling for potential relationship interactions before explicit modelling to improve the fault tolerance of explicit relationship detection. Then the visual and textual semantic representations are refined jointly via inter-modal interactive attention and cross-modal alignment. To correlate the context of objects with the textual context, we further refine the visual semantic representation via cross-level object-sentence and word-image-based interactive attention. Extensive experiments validate that the proposed hybrid-modal interaction with implicit and explicit modelling is more beneficial for image-text matching. And the proposed \textit{Hire} obtains new state-of-the-art results on MS-COCO and Flickr30K benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qian发布了新的文献求助30
2秒前
2秒前
可爱的函函应助江夏清采纳,获得10
3秒前
七十七asdmn完成签到,获得积分10
4秒前
郝煜祺完成签到,获得积分10
5秒前
科研通AI2S应助luo采纳,获得10
6秒前
青糯完成签到 ,获得积分10
6秒前
6秒前
紫陌完成签到,获得积分0
6秒前
自己完成签到,获得积分10
6秒前
动人的招牌完成签到 ,获得积分10
6秒前
LM发布了新的文献求助10
6秒前
coffee完成签到 ,获得积分10
7秒前
7秒前
打打应助qian采纳,获得10
7秒前
今后应助wsd采纳,获得10
8秒前
9秒前
小黄完成签到,获得积分10
9秒前
10秒前
11秒前
热心如花完成签到 ,获得积分10
12秒前
13秒前
Owen应助科研通管家采纳,获得10
13秒前
韦觅松发布了新的文献求助10
13秒前
神勇冬莲发布了新的文献求助10
13秒前
Lelern发布了新的文献求助30
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
Mic应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
指已成殇应助科研通管家采纳,获得200
14秒前
浮游应助科研通管家采纳,获得10
14秒前
xxfsx应助科研通管家采纳,获得10
14秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379465
求助须知:如何正确求助?哪些是违规求助? 4503814
关于积分的说明 14016664
捐赠科研通 4412588
什么是DOI,文献DOI怎么找? 2423880
邀请新用户注册赠送积分活动 1416751
关于科研通互助平台的介绍 1394290