Hire: Hybrid-modal Interaction with Multiple Relational Enhancements for Image-Text Matching

情态动词 匹配(统计) 图像(数学) 计算机科学 人工智能 情报检索 模式识别(心理学) 数学 化学 统计 高分子化学
作者
Xuri Ge,Fuhai Chen,Songpei Xu,Fuxiang Tao,Jie Wang,Joemon M. Jose
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.18579
摘要

Image-text matching (ITM) is a fundamental problem in computer vision. The key issue lies in jointly learning the visual and textual representation to estimate their similarity accurately. Most existing methods focus on feature enhancement within modality or feature interaction across modalities, which, however, neglects the contextual information of the object representation based on the inter-object relationships that match the corresponding sentences with rich contextual semantics. In this paper, we propose a Hybrid-modal Interaction with multiple Relational Enhancements (termed \textit{Hire}) for image-text matching, which correlates the intra- and inter-modal semantics between objects and words with implicit and explicit relationship modelling. In particular, the explicit intra-modal spatial-semantic graph-based reasoning network is designed to improve the contextual representation of visual objects with salient spatial and semantic relational connectivities, guided by the explicit relationships of the objects' spatial positions and their scene graph. We use implicit relationship modelling for potential relationship interactions before explicit modelling to improve the fault tolerance of explicit relationship detection. Then the visual and textual semantic representations are refined jointly via inter-modal interactive attention and cross-modal alignment. To correlate the context of objects with the textual context, we further refine the visual semantic representation via cross-level object-sentence and word-image-based interactive attention. Extensive experiments validate that the proposed hybrid-modal interaction with implicit and explicit modelling is more beneficial for image-text matching. And the proposed \textit{Hire} obtains new state-of-the-art results on MS-COCO and Flickr30K benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LX发布了新的文献求助10
刚刚
隐形以晴发布了新的文献求助10
2秒前
微瑕完成签到,获得积分10
2秒前
黄黄完成签到,获得积分10
2秒前
2秒前
4秒前
5秒前
5秒前
5秒前
5秒前
老实验人完成签到,获得积分10
5秒前
6秒前
黄黄发布了新的文献求助10
7秒前
CodeCraft应助qqq采纳,获得10
7秒前
shanlu完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
局内人发布了新的文献求助30
8秒前
ZSHAN完成签到,获得积分10
9秒前
10秒前
Li发布了新的文献求助10
10秒前
zxy发布了新的文献求助10
10秒前
冷艳水壶发布了新的文献求助10
11秒前
12秒前
16秒前
坦率完成签到,获得积分10
16秒前
zxy完成签到,获得积分10
16秒前
lisbattery完成签到,获得积分20
16秒前
Xiaoqiang完成签到,获得积分10
17秒前
Orange应助vita采纳,获得10
17秒前
乐正夜白发布了新的文献求助10
18秒前
18秒前
香蕉觅云应助lockedcc采纳,获得10
18秒前
梵蒂冈然后红烧肉完成签到,获得积分10
19秒前
19秒前
star完成签到,获得积分10
19秒前
取名真烦发布了新的文献求助10
20秒前
21秒前
huco发布了新的文献求助10
21秒前
蓝色天空发布了新的文献求助20
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424904
求助须知:如何正确求助?哪些是违规求助? 4539183
关于积分的说明 14165914
捐赠科研通 4456291
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435170
关于科研通互助平台的介绍 1412492