Hire: Hybrid-modal Interaction with Multiple Relational Enhancements for Image-Text Matching

情态动词 匹配(统计) 图像(数学) 计算机科学 人工智能 情报检索 模式识别(心理学) 数学 化学 统计 高分子化学
作者
Xuri Ge,Fuhai Chen,Songpei Xu,Fuxiang Tao,Jie Wang,Joemon M. Jose
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.18579
摘要

Image-text matching (ITM) is a fundamental problem in computer vision. The key issue lies in jointly learning the visual and textual representation to estimate their similarity accurately. Most existing methods focus on feature enhancement within modality or feature interaction across modalities, which, however, neglects the contextual information of the object representation based on the inter-object relationships that match the corresponding sentences with rich contextual semantics. In this paper, we propose a Hybrid-modal Interaction with multiple Relational Enhancements (termed \textit{Hire}) for image-text matching, which correlates the intra- and inter-modal semantics between objects and words with implicit and explicit relationship modelling. In particular, the explicit intra-modal spatial-semantic graph-based reasoning network is designed to improve the contextual representation of visual objects with salient spatial and semantic relational connectivities, guided by the explicit relationships of the objects' spatial positions and their scene graph. We use implicit relationship modelling for potential relationship interactions before explicit modelling to improve the fault tolerance of explicit relationship detection. Then the visual and textual semantic representations are refined jointly via inter-modal interactive attention and cross-modal alignment. To correlate the context of objects with the textual context, we further refine the visual semantic representation via cross-level object-sentence and word-image-based interactive attention. Extensive experiments validate that the proposed hybrid-modal interaction with implicit and explicit modelling is more beneficial for image-text matching. And the proposed \textit{Hire} obtains new state-of-the-art results on MS-COCO and Flickr30K benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YJL完成签到,获得积分10
1秒前
健康快乐完成签到,获得积分10
1秒前
miuu完成签到,获得积分10
2秒前
JayRoSe发布了新的文献求助10
2秒前
2秒前
杨杨杨发布了新的文献求助10
2秒前
月月呀完成签到,获得积分10
3秒前
didi发布了新的文献求助10
4秒前
嘉芮完成签到,获得积分10
4秒前
humorlife完成签到,获得积分10
4秒前
caffeine应助宁静致远采纳,获得10
4秒前
冰韵心完成签到,获得积分10
4秒前
肥鱼发布了新的文献求助10
5秒前
研友_Zeg9BL发布了新的文献求助10
5秒前
神经哇完成签到,获得积分10
6秒前
热心乌完成签到,获得积分0
6秒前
良辰应助桂子树采纳,获得10
7秒前
7秒前
十月秋风G完成签到,获得积分10
8秒前
8秒前
加油发布了新的文献求助10
8秒前
10秒前
怪胎完成签到,获得积分10
10秒前
外向毛巾完成签到,获得积分20
10秒前
TWei完成签到 ,获得积分20
10秒前
11秒前
11秒前
Muy完成签到,获得积分10
11秒前
李李完成签到,获得积分10
11秒前
阳阳阳完成签到,获得积分10
11秒前
ZEND完成签到,获得积分10
12秒前
12秒前
12秒前
神光发布了新的文献求助10
12秒前
13秒前
搬运工应助笑哈哈采纳,获得30
13秒前
Barry完成签到,获得积分10
13秒前
外向毛巾发布了新的文献求助10
13秒前
大罗完成签到,获得积分10
14秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167852
求助须知:如何正确求助?哪些是违规求助? 2819220
关于积分的说明 7925634
捐赠科研通 2479112
什么是DOI,文献DOI怎么找? 1320642
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443