Research on spatial-temporal synergistic sensor fault diagnosis method for top-blowing furnace

计算机科学 图形 数据挖掘 无线传感器网络 注意力网络 空间相关性 空间分析 人工智能 实时计算 模式识别(心理学) 遥感 理论计算机科学 计算机网络 电信 地质学
作者
Dongnian Jiang,Jinjiang Zhao
出处
期刊:Isa Transactions [Elsevier BV]
卷期号:151: 221-231 被引量:1
标识
DOI:10.1016/j.isatra.2024.05.040
摘要

Top-blowing furnace systems, characterized by a large number of sensors and harsh working environments, are prone to sensor failures due to factors like component aging and external interference. These failures can significantly impact the system's safe and reliable operation. However, traditional sensor fault diagnosis methods often neglect the exploration of spatial-temporal characteristics and focus solely on learning temporal relationships between sensors, failing to effectively consider their spatial relationships. In this study, we propose a spatial correlation model based on the maximal information-based graph convolutional network (MI-GCN) by constructing a sensor network knowledge graph using maximal mutual information. The MI-GCN leverages the graph convolution mechanism to extract multi-scale spatial features and capture the spatial relationships between sensors. Additionally, we develop a spatial-temporal graph-level prediction model, known as the spatial-temporal graph transformer (STGT), to extract temporal features. By combining the spatial features extracted by the MI-GCN with the temporal features captured by the STGT, accurate predictions can be achieved. Sensor fault diagnosis is conducted by analysing the normalized residuals between the predicted values and the ground truth. Finally, the feasibility and effectiveness of the proposed method are validated using test data from a top-blowing furnace system in the nickel smelting process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
英吉利25发布了新的文献求助10
3秒前
3秒前
3秒前
鸡块面发布了新的文献求助10
4秒前
谦让含玉发布了新的文献求助10
4秒前
喵77完成签到,获得积分20
4秒前
酷波er应助易达采纳,获得30
6秒前
周星星发布了新的文献求助10
7秒前
彪壮的亦瑶完成签到 ,获得积分10
7秒前
8秒前
9秒前
科研通AI5应助早睡早起采纳,获得10
9秒前
9秒前
Orange应助zzz采纳,获得10
10秒前
思维隋发布了新的文献求助10
10秒前
Owen应助快乐的亿万富翁采纳,获得10
11秒前
顾矜应助Bili采纳,获得10
12秒前
木棉发布了新的文献求助10
12秒前
鸡块面完成签到,获得积分10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
LaTeXer应助科研通管家采纳,获得50
13秒前
yar应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
yar应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
14秒前
14秒前
所所应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得30
14秒前
yar应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998724
求助须知:如何正确求助?哪些是违规求助? 3538169
关于积分的说明 11273611
捐赠科研通 3277151
什么是DOI,文献DOI怎么找? 1807423
邀请新用户注册赠送积分活动 883867
科研通“疑难数据库(出版商)”最低求助积分说明 810070