已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on spatial-temporal synergistic sensor fault diagnosis method for top-blowing furnace

计算机科学 图形 数据挖掘 无线传感器网络 注意力网络 空间相关性 空间分析 人工智能 实时计算 模式识别(心理学) 遥感 理论计算机科学 地质学 计算机网络 电信
作者
Dongnian Jiang,Jinjiang Zhao
出处
期刊:Isa Transactions [Elsevier]
卷期号:151: 221-231 被引量:1
标识
DOI:10.1016/j.isatra.2024.05.040
摘要

Top-blowing furnace systems, characterized by a large number of sensors and harsh working environments, are prone to sensor failures due to factors like component aging and external interference. These failures can significantly impact the system's safe and reliable operation. However, traditional sensor fault diagnosis methods often neglect the exploration of spatial-temporal characteristics and focus solely on learning temporal relationships between sensors, failing to effectively consider their spatial relationships. In this study, we propose a spatial correlation model based on the maximal information-based graph convolutional network (MI-GCN) by constructing a sensor network knowledge graph using maximal mutual information. The MI-GCN leverages the graph convolution mechanism to extract multi-scale spatial features and capture the spatial relationships between sensors. Additionally, we develop a spatial-temporal graph-level prediction model, known as the spatial-temporal graph transformer (STGT), to extract temporal features. By combining the spatial features extracted by the MI-GCN with the temporal features captured by the STGT, accurate predictions can be achieved. Sensor fault diagnosis is conducted by analysing the normalized residuals between the predicted values and the ground truth. Finally, the feasibility and effectiveness of the proposed method are validated using test data from a top-blowing furnace system in the nickel smelting process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助我爱行楷采纳,获得10
1秒前
lxl完成签到,获得积分10
1秒前
单纯凡雁发布了新的文献求助10
2秒前
jp发布了新的文献求助10
3秒前
clei发布了新的文献求助10
3秒前
song完成签到 ,获得积分10
3秒前
4秒前
田様应助oxgen采纳,获得10
4秒前
科研通AI6应助烊驼采纳,获得30
4秒前
li发布了新的文献求助10
5秒前
小鱼完成签到,获得积分10
6秒前
顾矜应助xuan采纳,获得10
7秒前
7秒前
7秒前
格调发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
小鱼发布了新的文献求助10
11秒前
清瓷发布了新的文献求助10
12秒前
14秒前
111发布了新的文献求助10
14秒前
卷毛完成签到,获得积分10
16秒前
xuan发布了新的文献求助10
18秒前
19秒前
所所应助傲娇的小松鼠采纳,获得10
19秒前
小王完成签到,获得积分10
19秒前
li发布了新的文献求助10
20秒前
mineng发布了新的文献求助60
22秒前
Takahara2000完成签到,获得积分10
25秒前
26秒前
科研通AI6应助窝恁叠采纳,获得10
27秒前
yyyyxxxg发布了新的文献求助10
28秒前
徐徐完成签到 ,获得积分10
29秒前
lily发布了新的文献求助10
30秒前
30秒前
31秒前
33秒前
33秒前
sopha完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590088
求助须知:如何正确求助?哪些是违规求助? 4674539
关于积分的说明 14794246
捐赠科研通 4630025
什么是DOI,文献DOI怎么找? 2532525
邀请新用户注册赠送积分活动 1501202
关于科研通互助平台的介绍 1468561