Deep transfer learning strategy in intelligent fault diagnosis of rotating machinery

计算机科学 断层(地质) 透视图(图形) 领域(数学分析) 可靠性(半导体) 人工智能 学习迁移 数学分析 功率(物理) 物理 数学 量子力学 地震学 地质学
作者
Shengnan Tang,Jingtao Ma,Yan Zhe,Yong Zhu,Boo Cheong Khoo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:134: 108678-108678 被引量:1
标识
DOI:10.1016/j.engappai.2024.108678
摘要

Rotating machinery plays an essential part in many engineering fields. It needs prompt solutions to the prognosis and health management to ensure the system reliability. Facilitated by big data and artificial intelligence, intelligent fault diagnosis provides a new approach. As for the insufficient faulty data and complex conditions, deep transfer learning (DTL) presents a possible approach for cross-domain and cross-machine diagnosis. The published reviews thus far mainly emphasize on the analysis of fault diagnosis based on common classes of DTL or industrial application scenarios. This review concentrates on the applications of DTL in rotating machinery. Moreover, present relevant reviews were mainly till the end of 2021. The latest researches are analyzed from then until now. A special main line based on input types is chosen that distinguishes it from other reviews. From this perspective, it is therefore valuable to comprehensively investigate the fault diagnosis of rotating machinery. This survey firstly outlines the fundamental principle and conventional categories of DTL. The primary applications of DTL in fault diagnosis of rotating machinery are then summarized, and more than 100 relative studies have been analyzed. The special perspective of input types is selected and evaluated, including one-dimensional and two-dimensional, on the DTL framework as applied to the rotary machines discussed. Finally, the existing challenges are pointed out and potential future trends of DTL are prospected. This review helps readers to understand the research status and development trends of transfer intelligent fault diagnosis. It serves to the innovative exploration from multiple different scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1504发布了新的文献求助10
1秒前
1秒前
1秒前
CD发布了新的文献求助10
3秒前
D33sama发布了新的文献求助30
3秒前
漂泊1991发布了新的文献求助10
4秒前
学渣小林完成签到,获得积分10
5秒前
5秒前
6秒前
科研通AI2S应助老白茶采纳,获得20
7秒前
高会和发布了新的文献求助10
7秒前
daydayday发布了新的文献求助20
7秒前
隐形曼青应助勤恳含烟采纳,获得10
8秒前
小洪帽完成签到,获得积分10
9秒前
wanci应助狂野的雁丝采纳,获得10
9秒前
打打应助搞怪白秋采纳,获得10
9秒前
袁翰将军完成签到 ,获得积分10
10秒前
打打应助zeero采纳,获得10
10秒前
活力的彩虹完成签到 ,获得积分10
13秒前
oceanao应助喜悦的冰菱采纳,获得10
13秒前
13秒前
xi发布了新的文献求助10
13秒前
Singularity应助Jackie采纳,获得10
15秒前
微斯人应助Jackie采纳,获得50
15秒前
搬运工应助深情冷雪采纳,获得10
15秒前
阿怪12333完成签到,获得积分10
16秒前
16秒前
传奇3应助机智的然然采纳,获得10
16秒前
bobo完成签到,获得积分10
17秒前
17秒前
mg完成签到,获得积分10
17秒前
sx发布了新的文献求助10
17秒前
Hedy完成签到,获得积分10
18秒前
jayus发布了新的文献求助30
18秒前
18秒前
19秒前
FashionBoy应助GG小丁同学采纳,获得10
19秒前
ZD完成签到 ,获得积分10
19秒前
慕青应助srui采纳,获得10
19秒前
19秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
麻省总医院内科手册(原著第8版) (美)马克S.萨巴蒂尼,英文版即可,因为没有中文版。 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156631
求助须知:如何正确求助?哪些是违规求助? 2808058
关于积分的说明 7876045
捐赠科研通 2466421
什么是DOI,文献DOI怎么找? 1312876
科研通“疑难数据库(出版商)”最低求助积分说明 630299
版权声明 601919