A novel percussion-based approach for pipeline leakage detection with improved MobileNetV2

计算机科学 打击乐器 泄漏(经济) 管道(软件) 实时计算 人工智能 语音识别 声学 操作系统 物理 经济 宏观经济学
作者
Longguang Peng,Jicheng Zhang,Yuanqi Li,Guofeng Du
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108537-108537
标识
DOI:10.1016/j.engappai.2024.108537
摘要

Pipelines are susceptible to oil and gas leaks during long-distance transportation due to factors such as damage from external forces and aging. However, existing pipeline leakage detection technologies that rely on physical inspections or sensors installed on pipelines are time-consuming and costly. In this paper, a percussion approach based on improved MobileNetV2 is proposed for pipeline leakage detection. Firstly, the influence of pipe leakage size on vibration characteristics was investigated by theoretical analysis and numerical simulation. Subsequently, experiments were conducted to assess the validity of the proposed method. The sounds produced by hammering the pipe under different damage conditions were recorded using a smartphone. The improved MobileNetV2 model was then used for classifying Mel spectrogram and Mel frequency cepstrum coefficient (MFCC) features extracted from the recorded sound signals. This model incorporates a multi-scale feature fusion module, which allows it to capture features at different scales and enhances its ability to differentiate between damage conditions. Experimental results show that using Mel spectrogram as input for the improved MobileNetV2 achieves a higher accuracy compared to using MFCC, with 100% accuracy for identifying leakage damage and 99.87% for classifying leak size. Compared to other methods, the improved MobileNetV2 exhibits superior classification performance while maintaining the lightweight characteristics of the original MobileNetV2. In conclusion, the improved model demonstrates significant enhancements in classification performance and operational efficiency, making it a promising approach for processing percussive signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
april发布了新的文献求助10
1秒前
小马甲应助wang采纳,获得10
3秒前
glocon发布了新的文献求助10
4秒前
尔信完成签到 ,获得积分10
4秒前
4秒前
何三完成签到 ,获得积分10
5秒前
AXQ完成签到,获得积分10
6秒前
ZrAug21完成签到,获得积分10
7秒前
8秒前
9秒前
sln完成签到,获得积分10
9秒前
聖璕完成签到,获得积分10
11秒前
wang给wang的求助进行了留言
12秒前
达奈林发布了新的文献求助10
16秒前
小蘑菇应助ZrAug21采纳,获得10
16秒前
april完成签到,获得积分10
16秒前
17秒前
19秒前
调皮翠霜发布了新的文献求助10
21秒前
glocon完成签到,获得积分10
21秒前
wjj完成签到 ,获得积分10
21秒前
难过千凡发布了新的文献求助10
22秒前
22秒前
23秒前
caq发布了新的文献求助10
23秒前
24秒前
小二郎应助12138采纳,获得10
26秒前
27秒前
27秒前
默默访风发布了新的文献求助10
28秒前
30秒前
31秒前
沐金秋发布了新的文献求助10
31秒前
sss完成签到 ,获得积分10
33秒前
汉堡包应助心灵美的翠采纳,获得20
33秒前
小二郎应助zzr元亨利贞采纳,获得10
34秒前
Akim应助byecslx采纳,获得30
35秒前
严昌发布了新的文献求助10
36秒前
斯文败类应助嘻嘻采纳,获得10
37秒前
温暖的以旋完成签到,获得积分10
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138618
求助须知:如何正确求助?哪些是违规求助? 2789599
关于积分的说明 7791655
捐赠科研通 2445949
什么是DOI,文献DOI怎么找? 1300780
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079