A novel percussion-based approach for pipeline leakage detection with improved MobileNetV2

计算机科学 打击乐器 泄漏(经济) 管道(软件) 实时计算 人工智能 语音识别 声学 操作系统 物理 经济 宏观经济学
作者
Longguang Peng,Jicheng Zhang,Yuanqi Li,Guofeng Du
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108537-108537 被引量:8
标识
DOI:10.1016/j.engappai.2024.108537
摘要

Pipelines are susceptible to oil and gas leaks during long-distance transportation due to factors such as damage from external forces and aging. However, existing pipeline leakage detection technologies that rely on physical inspections or sensors installed on pipelines are time-consuming and costly. In this paper, a percussion approach based on improved MobileNetV2 is proposed for pipeline leakage detection. Firstly, the influence of pipe leakage size on vibration characteristics was investigated by theoretical analysis and numerical simulation. Subsequently, experiments were conducted to assess the validity of the proposed method. The sounds produced by hammering the pipe under different damage conditions were recorded using a smartphone. The improved MobileNetV2 model was then used for classifying Mel spectrogram and Mel frequency cepstrum coefficient (MFCC) features extracted from the recorded sound signals. This model incorporates a multi-scale feature fusion module, which allows it to capture features at different scales and enhances its ability to differentiate between damage conditions. Experimental results show that using Mel spectrogram as input for the improved MobileNetV2 achieves a higher accuracy compared to using MFCC, with 100% accuracy for identifying leakage damage and 99.87% for classifying leak size. Compared to other methods, the improved MobileNetV2 exhibits superior classification performance while maintaining the lightweight characteristics of the original MobileNetV2. In conclusion, the improved model demonstrates significant enhancements in classification performance and operational efficiency, making it a promising approach for processing percussive signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
gaoxun发布了新的文献求助10
2秒前
556677y发布了新的文献求助10
3秒前
小小吴完成签到,获得积分10
4秒前
Hyperme完成签到,获得积分10
4秒前
4秒前
dsgfg完成签到,获得积分10
5秒前
江南第八完成签到,获得积分10
6秒前
简单完成签到,获得积分10
7秒前
7秒前
zuo发布了新的文献求助10
7秒前
8秒前
我是老大应助Xicuws采纳,获得20
8秒前
9秒前
9秒前
haokun完成签到,获得积分10
10秒前
10秒前
11秒前
情怀应助赵成龙采纳,获得10
11秒前
12秒前
12秒前
sopha发布了新的文献求助10
12秒前
请叫我风吹麦浪应助JPH1990采纳,获得10
13秒前
清爽乐菱应助Green采纳,获得30
15秒前
yy发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
酷酷的冰真应助6260采纳,获得30
17秒前
Chen发布了新的文献求助10
17秒前
yu777完成签到,获得积分10
17秒前
18秒前
奚斌完成签到,获得积分10
19秒前
泡泡糖与一世安完成签到,获得积分10
19秒前
魔芋完成签到,获得积分10
19秒前
安详的三颜完成签到 ,获得积分10
19秒前
JX发布了新的文献求助10
21秒前
21秒前
华仔应助li采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512151
关于积分的说明 11161937
捐赠科研通 3246996
什么是DOI,文献DOI怎么找? 1793640
邀请新用户注册赠送积分活动 874520
科研通“疑难数据库(出版商)”最低求助积分说明 804421