A novel percussion-based approach for pipeline leakage detection with improved MobileNetV2

计算机科学 打击乐器 泄漏(经济) 管道(软件) 实时计算 人工智能 语音识别 声学 操作系统 物理 宏观经济学 经济
作者
Longguang Peng,Jicheng Zhang,Yuanqi Li,Guofeng Du
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108537-108537 被引量:8
标识
DOI:10.1016/j.engappai.2024.108537
摘要

Pipelines are susceptible to oil and gas leaks during long-distance transportation due to factors such as damage from external forces and aging. However, existing pipeline leakage detection technologies that rely on physical inspections or sensors installed on pipelines are time-consuming and costly. In this paper, a percussion approach based on improved MobileNetV2 is proposed for pipeline leakage detection. Firstly, the influence of pipe leakage size on vibration characteristics was investigated by theoretical analysis and numerical simulation. Subsequently, experiments were conducted to assess the validity of the proposed method. The sounds produced by hammering the pipe under different damage conditions were recorded using a smartphone. The improved MobileNetV2 model was then used for classifying Mel spectrogram and Mel frequency cepstrum coefficient (MFCC) features extracted from the recorded sound signals. This model incorporates a multi-scale feature fusion module, which allows it to capture features at different scales and enhances its ability to differentiate between damage conditions. Experimental results show that using Mel spectrogram as input for the improved MobileNetV2 achieves a higher accuracy compared to using MFCC, with 100% accuracy for identifying leakage damage and 99.87% for classifying leak size. Compared to other methods, the improved MobileNetV2 exhibits superior classification performance while maintaining the lightweight characteristics of the original MobileNetV2. In conclusion, the improved model demonstrates significant enhancements in classification performance and operational efficiency, making it a promising approach for processing percussive signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tgh发布了新的文献求助10
1秒前
2秒前
FashionBoy应助KTy采纳,获得10
2秒前
归尘发布了新的文献求助30
3秒前
3秒前
lzy发布了新的文献求助10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助150
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
科研通AI5应助hhhhh采纳,获得10
5秒前
hzh发布了新的文献求助30
6秒前
浮游应助杨甜心采纳,获得10
6秒前
酷波er应助杨甜心采纳,获得10
6秒前
hbu123完成签到,获得积分10
6秒前
HeYan发布了新的文献求助10
6秒前
陌上尘发布了新的文献求助20
6秒前
豆腐干发布了新的文献求助10
7秒前
7秒前
HHH完成签到,获得积分10
8秒前
浮游应助球状闪电采纳,获得10
8秒前
李雪宁发布了新的文献求助10
9秒前
缥缈浩然发布了新的文献求助10
9秒前
耶耶发布了新的文献求助10
10秒前
10秒前
10秒前
冷酷迎天完成签到,获得积分10
10秒前
白白白发布了新的文献求助10
11秒前
11秒前
大鸡翅发布了新的文献求助10
11秒前
独特的星星完成签到,获得积分10
11秒前
HHH发布了新的文献求助10
11秒前
12秒前
顾矜应助科研小白采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5004701
求助须知:如何正确求助?哪些是违规求助? 4248613
关于积分的说明 13237820
捐赠科研通 4048108
什么是DOI,文献DOI怎么找? 2214708
邀请新用户注册赠送积分活动 1224611
关于科研通互助平台的介绍 1145071