A novel percussion-based approach for pipeline leakage detection with improved MobileNetV2

计算机科学 打击乐器 泄漏(经济) 管道(软件) 实时计算 人工智能 语音识别 声学 操作系统 物理 经济 宏观经济学
作者
Longguang Peng,Jicheng Zhang,Yuanqi Li,Guofeng Du
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108537-108537
标识
DOI:10.1016/j.engappai.2024.108537
摘要

Pipelines are susceptible to oil and gas leaks during long-distance transportation due to factors such as damage from external forces and aging. However, existing pipeline leakage detection technologies that rely on physical inspections or sensors installed on pipelines are time-consuming and costly. In this paper, a percussion approach based on improved MobileNetV2 is proposed for pipeline leakage detection. Firstly, the influence of pipe leakage size on vibration characteristics was investigated by theoretical analysis and numerical simulation. Subsequently, experiments were conducted to assess the validity of the proposed method. The sounds produced by hammering the pipe under different damage conditions were recorded using a smartphone. The improved MobileNetV2 model was then used for classifying Mel spectrogram and Mel frequency cepstrum coefficient (MFCC) features extracted from the recorded sound signals. This model incorporates a multi-scale feature fusion module, which allows it to capture features at different scales and enhances its ability to differentiate between damage conditions. Experimental results show that using Mel spectrogram as input for the improved MobileNetV2 achieves a higher accuracy compared to using MFCC, with 100% accuracy for identifying leakage damage and 99.87% for classifying leak size. Compared to other methods, the improved MobileNetV2 exhibits superior classification performance while maintaining the lightweight characteristics of the original MobileNetV2. In conclusion, the improved model demonstrates significant enhancements in classification performance and operational efficiency, making it a promising approach for processing percussive signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xu完成签到,获得积分10
刚刚
刚刚
秀丽千山完成签到,获得积分10
刚刚
1秒前
2秒前
哈哈哈哈完成签到,获得积分10
2秒前
沧海泪发布了新的文献求助10
3秒前
小胡先森应助凤凰山采纳,获得10
3秒前
一一完成签到,获得积分10
3秒前
惠惠发布了新的文献求助10
3秒前
shotgod完成签到,获得积分20
4秒前
科研通AI5应助蕾子采纳,获得10
4秒前
happy杨完成签到 ,获得积分10
4秒前
lichaoyes发布了新的文献求助10
4秒前
4秒前
Owen应助通~采纳,获得10
4秒前
封闭货车发布了新的文献求助10
5秒前
5秒前
www发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
shotgod发布了新的文献求助10
7秒前
ling玲完成签到,获得积分10
7秒前
奔奔发布了新的文献求助10
7秒前
SweepingMonk应助虚心盼晴采纳,获得10
8秒前
9秒前
汉堡包应助XXF采纳,获得10
9秒前
wzh完成签到,获得积分10
9秒前
海底落日完成签到,获得积分20
9秒前
10秒前
科研通AI5应助123采纳,获得30
10秒前
烟花应助pi采纳,获得10
11秒前
汉堡包应助小木木壮采纳,获得10
11秒前
11秒前
yl发布了新的文献求助30
11秒前
菲菲呀发布了新的文献求助10
11秒前
11秒前
科研通AI5应助禾泽采纳,获得30
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794