Estimating soil salinity in mulched cotton fields using UAV-based hyperspectral remote sensing and a Seagull Optimization Algorithm-Enhanced Random Forest Model

高光谱成像 遥感 随机森林 环境科学 盐度 算法 土壤科学 农业工程 计算机科学 人工智能 地质学 工程类 海洋学
作者
Jiao Tan,Jianli Ding,Zeyuan Wang,Lijing Han,Xiao Wang,Yongkang Li,Zhe Zhang,Shanshan Meng,Weijian Cai,Yanhong Hong
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:221: 109017-109017 被引量:8
标识
DOI:10.1016/j.compag.2024.109017
摘要

Xinjiang is a crucial production base for mulched cotton fields but faces increasingly severe challenges of soil salinization. Under the current drive towards precision agriculture, high precision monitoring of agricultural conditions at the field scale has become critical. Traditional remote sensing technologies are limited by insufficient spatial and spectral resolution, making field monitoring under mulched conditions exceptionally challenging. This study introduces a novel approach combining drone-based hyperspectral remote sensing with the Seagull Optimization Algorithm-Enhanced Random Forest Model (SOA-RF). After employing the preprocessing techniques of standard normal variable (SNV) and fractional order derivative (FOD), we employed the model to assess the level of field-scale salinization under optimization of feature selection using separate dimensionality reduction algorithms (sequential projection algorithm (SPA), optimal band combination analysis (OBCA)) and a combined approach (SPA-OBCA). The following main results were found: (1) SNV and FOD enhanced the spectral characteristics of cotton canopies, with the FOD technique performing better in detecting subtle signal changes in the positive and negative peaks of the spectrum. (2) SPA and OBCA were effective in screening the soil salt-sensitive bands in cotton canopies but the combined SPA-OBCA method provided a better selective preference for hyperspectral bands, with an optimal correlation of 0.926. (3) The model combined the advantages of SOA with the power of Random Forest to optimize the parameters and improve the estimation accuracy (R2 = 0.925, RPD = 4.128). We used unmanned aerial vehicle hyperspectral imagery to create a 5-cm resolution map of soil salinity distribution in cotton fields that allowed detection of differences in soil salinity between mulches, thus providing a scientific basis for soil salinity management and the development of precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悲凉的孤菱完成签到,获得积分10
1秒前
丘比特应助西番雅采纳,获得10
1秒前
化工牛马发布了新的文献求助10
4秒前
裴雅柔完成签到,获得积分10
4秒前
原鑫完成签到,获得积分10
4秒前
仲颖完成签到,获得积分10
4秒前
龙华之士发布了新的文献求助10
4秒前
fddd完成签到,获得积分10
4秒前
6秒前
7秒前
小王完成签到 ,获得积分10
8秒前
zyt完成签到,获得积分10
8秒前
rose完成签到,获得积分10
9秒前
yuhang完成签到,获得积分10
10秒前
西番雅完成签到,获得积分10
10秒前
10秒前
无钱完成签到,获得积分10
10秒前
11秒前
12秒前
花木兰完成签到,获得积分10
13秒前
西番雅发布了新的文献求助10
13秒前
ez2完成签到 ,获得积分10
13秒前
zjh11143完成签到,获得积分10
14秒前
科研通AI6应助留胡子的海采纳,获得10
14秒前
14秒前
丽娜完成签到,获得积分10
14秒前
sunshine完成签到,获得积分10
15秒前
15秒前
15秒前
Felix发布了新的文献求助10
16秒前
艾查恩完成签到,获得积分10
16秒前
舒婷婷小同学完成签到 ,获得积分10
18秒前
18秒前
lll发布了新的文献求助10
18秒前
Li发布了新的文献求助10
19秒前
20秒前
Ava应助可恶采纳,获得10
20秒前
20秒前
21秒前
敏感易烟发布了新的文献求助30
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911665
求助须知:如何正确求助?哪些是违规求助? 4187116
关于积分的说明 13002794
捐赠科研通 3954954
什么是DOI,文献DOI怎么找? 2168516
邀请新用户注册赠送积分活动 1186997
关于科研通互助平台的介绍 1094256