已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PCNet: Prior Category Network for CT Universal Segmentation Model

分割 计算机科学 人工智能 图像分割 计算机视觉
作者
Yixin Chen,Yajuan Gao,Lei Zhu,Wenrui Shao,Yanye Lu,Hongbin Han,Zhaoheng Xie
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3319-3330
标识
DOI:10.1109/tmi.2024.3395349
摘要

Accurate segmentation of anatomical structures in Computed Tomography (CT) images is crucial for clinical diagnosis, treatment planning, and disease monitoring. The present deep learning segmentation methods are hindered by factors such as data scale and model size. Inspired by how doctors identify tissues, we propose a novel approach, the Prior Category Network (PCNet), that boosts segmentation performance by leveraging prior knowledge between different categories of anatomical structures. Our PCNet comprises three key components: prior category prompt (PCP), hierarchy category system (HCS), and hierarchy category loss (HCL). PCP utilizes Contrastive Language-Image Pretraining (CLIP), along with attention modules, to systematically define the relationships between anatomical categories as identified by clinicians. HCS guides the segmentation model in distinguishing between specific organs, anatomical structures, and functional systems through hierarchical relationships. HCL serves as a consistency constraint, fortifying the directional guidance provided by HCS to enhance the segmentation model's accuracy and robustness. We conducted extensive experiments to validate the effectiveness of our approach, and the results indicate that PCNet can generate a high-performance, universal model for CT segmentation. The PCNet framework also demonstrates a significant transferability on multiple downstream tasks. The ablation experiments show that the methodology employed in constructing the HCS is of critical importance. The prompt and HCS can be accessed at https://github.com/PKU-MIPET/PCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平平发布了新的文献求助10
2秒前
6秒前
6秒前
蓝醉澹翠妖娆完成签到,获得积分10
8秒前
13秒前
李健的小迷弟应助GGGGEEEE采纳,获得10
14秒前
番茄完成签到,获得积分10
17秒前
Hasee完成签到 ,获得积分10
19秒前
精明的远锋完成签到,获得积分10
19秒前
20秒前
标致的元柏完成签到,获得积分10
23秒前
JamesPei应助LP采纳,获得10
23秒前
骆十八发布了新的文献求助30
26秒前
香蕉觅云应助dayrim采纳,获得10
26秒前
26秒前
xxx完成签到 ,获得积分10
26秒前
27秒前
小程别放弃完成签到,获得积分10
30秒前
招水若离完成签到,获得积分10
30秒前
RenSiyu发布了新的文献求助10
33秒前
33秒前
WUWUWU应助tree采纳,获得10
34秒前
GGGGEEEE发布了新的文献求助10
39秒前
46秒前
白白白完成签到 ,获得积分10
50秒前
苏格拉没有底完成签到 ,获得积分10
51秒前
LP发布了新的文献求助10
52秒前
52秒前
annnnnnd完成签到 ,获得积分10
52秒前
CipherSage应助自然的茉莉采纳,获得10
53秒前
uniquedl完成签到 ,获得积分10
57秒前
燕尔蓝发布了新的文献求助30
58秒前
NPC应助RenSiyu采纳,获得30
59秒前
LP完成签到,获得积分10
1分钟前
稍远完成签到,获得积分10
1分钟前
1分钟前
Hui完成签到,获得积分10
1分钟前
popot应助单身的钧采纳,获得10
1分钟前
RenSiyu完成签到,获得积分10
1分钟前
深情安青应助胖鲤鱼采纳,获得10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307263
求助须知:如何正确求助?哪些是违规求助? 2940973
关于积分的说明 8499960
捐赠科研通 2615205
什么是DOI,文献DOI怎么找? 1428784
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382