营养水平
污染
微塑料
栅藻
环境化学
藻类
绿藻门
蓝藻
生物
生态学
化学
植物
细菌
遗传学
作者
Zhonghui Guo,Jieming Li,Ziqing Zhang
出处
期刊:Water Research
[Elsevier]
日期:2024-05-02
卷期号:258: 121706-121706
被引量:3
标识
DOI:10.1016/j.watres.2024.121706
摘要
Micro/nano-plastics (MNPs), as emerging persistent pollutants, are threatening freshwater ecosystems worldwide. Microalgae are important primary producers at the base of trophic level and susceptible to MNPs contamination, possibly resulting in further contamination in higher trophic levels and water quality. This study conducted a systematic review of 1071 observations from 63 publications, utilizing meta-analysis and subgroup analysis to investigate the toxicological effect patterns of MNPs parameters (size, concentration, and type) on microalgae. We also explored the potential eco-risks of certain specific MNPs parameters and subtle variations in the response of various microalgae taxa to MNPs. Results suggested that microplastics significantly inhibited microalgal photosynthesis, while nano-plastics induced more severe cell membrane damage and promoted toxin-release. Within a certain range of concentrations (0∼50 mg/L), rising MNPs concentration progressively inhibited microalgal growth and chlorophyll-a content, and progressively enhanced toxin-release. Among MNPs types, polyamide caused higher growth inhibition and more severe lipid peroxidation, and polystyrene induced more toxin-release, whereas polyethylene terephthalate and polymethyl methacrylate posed minimal effects on microalgae. Moreover, Bacillariophyta growth was inhibited most significantly, while Chlorophyta displayed strong tolerance and Cyanophyta possessed strong adaptive and exceptional resilience. Particularly, Komvophoron, Microcystis, Nostoc, Scenedesmus, and Gomphonema were more tolerant and might dominate freshwater microalgal communities under MNPs contamination. These results are crucial for acquiring the fate of freshwater microalgae under various MNPs contamination, identifying dominant microalgae, and reasonably assessing and managing involved eco-risks.
科研通智能强力驱动
Strongly Powered by AbleSci AI