Splitting long‐term and short‐term financial ratios for improved financial distress prediction: Evidence from Taiwanese public companies

期限(时间) 财务困境 财务 业务 经济 精算学 金融体系 量子力学 物理
作者
Asyrofa Rahmi,Chia-Chi Lu,Deron Liang,Ayu Nur Fadilah
出处
期刊:Journal of Forecasting [Wiley]
标识
DOI:10.1002/for.3143
摘要

Abstract Financial distress occurs when a company cannot meet its financial obligations within a specified timeframe, often owing to prolonged poor operational performance. While studies on financial distress prediction (FDP) use financial ratios (FRs) to forecast distress, they neglect to differentiate long‐term (LT) attributes from FRs. To address this gap, our study introduces a novel model that distinguishes between LT and short‐term (ST) accounting attributes in FRs. Using data from Taiwanese public companies (1991–2018), our proposed model employs a stacking ensemble classifier to split LT and ST Altman's ratios. This study addresses three key questions: (1) Do models involving split of LT and ST ratios outperform those that combine them? (2) How reliable and robust are these proposed models? (3) What is the proposed model's impact on distress prediction? The results show a significant outperformance of the existing solution, with higher accuracy, lower Type I and Type II errors, and reduced misclassification costs. These models are reliable in handling imbalanced data, proving suitable for real‐market investigations. Diverse FR contexts from previous Taiwanese studies validate the distinction between LT and ST features, representing robust performance. This model identifies characteristics of correctly and incorrectly predicted distress in companies, providing nuanced insights into complex distress attributes. This study introduces a pioneering model demonstrating superior predictive accuracy, reliability, and robustness by considering the split between LT and ST accounting attributes. It lays a foundation for future studies to extend and refine the proposed model, offering valuable insights into the complex dynamics of FDP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
zyyyy完成签到,获得积分10
1秒前
dd完成签到,获得积分20
1秒前
1秒前
混子发布了新的文献求助10
1秒前
HYG完成签到,获得积分10
2秒前
二橦完成签到 ,获得积分10
2秒前
熊博士完成签到,获得积分10
3秒前
哲000发布了新的文献求助10
3秒前
丰富的世界完成签到 ,获得积分10
3秒前
4秒前
4秒前
路漫漫其修远兮完成签到,获得积分10
4秒前
GGZ发布了新的文献求助10
4秒前
啦啦啦发布了新的文献求助10
4秒前
5秒前
阿坤完成签到,获得积分10
6秒前
dd发布了新的文献求助10
7秒前
桐桐应助小智采纳,获得10
7秒前
九川完成签到,获得积分10
7秒前
混子完成签到,获得积分10
7秒前
7秒前
8秒前
Wang完成签到,获得积分10
8秒前
星辰大海应助Ll采纳,获得10
8秒前
Jasper应助妮儿采纳,获得10
9秒前
tododoto完成签到,获得积分10
9秒前
9秒前
淙淙柔水完成签到,获得积分0
9秒前
杳鸢应助mc1220采纳,获得10
9秒前
rosa完成签到,获得积分10
9秒前
郑小七发布了新的文献求助10
10秒前
Tianxu Li完成签到,获得积分10
11秒前
11秒前
九川发布了新的文献求助10
12秒前
Lucas应助无限的隶采纳,获得10
12秒前
胡雅琴完成签到,获得积分10
12秒前
sakurai完成签到,获得积分10
13秒前
清歌扶酒关注了科研通微信公众号
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759