Splitting long‐term and short‐term financial ratios for improved financial distress prediction: Evidence from Taiwanese public companies

期限(时间) 财务困境 财务 业务 经济 精算学 金融体系 量子力学 物理
作者
Asyrofa Rahmi,Chia-Chi Lu,Deron Liang,Ayu Nur Fadilah
出处
期刊:Journal of Forecasting [Wiley]
标识
DOI:10.1002/for.3143
摘要

Abstract Financial distress occurs when a company cannot meet its financial obligations within a specified timeframe, often owing to prolonged poor operational performance. While studies on financial distress prediction (FDP) use financial ratios (FRs) to forecast distress, they neglect to differentiate long‐term (LT) attributes from FRs. To address this gap, our study introduces a novel model that distinguishes between LT and short‐term (ST) accounting attributes in FRs. Using data from Taiwanese public companies (1991–2018), our proposed model employs a stacking ensemble classifier to split LT and ST Altman's ratios. This study addresses three key questions: (1) Do models involving split of LT and ST ratios outperform those that combine them? (2) How reliable and robust are these proposed models? (3) What is the proposed model's impact on distress prediction? The results show a significant outperformance of the existing solution, with higher accuracy, lower Type I and Type II errors, and reduced misclassification costs. These models are reliable in handling imbalanced data, proving suitable for real‐market investigations. Diverse FR contexts from previous Taiwanese studies validate the distinction between LT and ST features, representing robust performance. This model identifies characteristics of correctly and incorrectly predicted distress in companies, providing nuanced insights into complex distress attributes. This study introduces a pioneering model demonstrating superior predictive accuracy, reliability, and robustness by considering the split between LT and ST accounting attributes. It lays a foundation for future studies to extend and refine the proposed model, offering valuable insights into the complex dynamics of FDP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助小闫闫采纳,获得50
1秒前
2秒前
小1完成签到,获得积分10
2秒前
所所应助自觉松鼠采纳,获得10
2秒前
qqqqq发布了新的文献求助30
3秒前
zzzzzz发布了新的文献求助10
3秒前
所所应助ASDF采纳,获得10
3秒前
4秒前
小张完成签到,获得积分20
4秒前
科研通AI2S应助戈壁滩的鱼采纳,获得10
4秒前
sallltyyy发布了新的文献求助10
5秒前
bozhe19890125发布了新的文献求助10
6秒前
Singularity应助魔幻的焱采纳,获得10
6秒前
6秒前
6秒前
猫一盒完成签到,获得积分10
7秒前
7秒前
7秒前
爱学习的小西瓜完成签到,获得积分10
7秒前
Yan完成签到 ,获得积分10
7秒前
宗语雪完成签到,获得积分10
8秒前
8秒前
9秒前
大模型应助王哪儿跑0_0采纳,获得10
9秒前
自觉松鼠发布了新的文献求助10
10秒前
榴莲受众发布了新的文献求助10
10秒前
小魏关注了科研通微信公众号
11秒前
11秒前
xiaolang2004发布了新的文献求助10
11秒前
狂野的刺猬完成签到,获得积分10
12秒前
自觉松鼠发布了新的文献求助10
12秒前
柒柒发布了新的文献求助30
12秒前
李健应助XXOO采纳,获得10
13秒前
李倇仪关注了科研通微信公众号
13秒前
xiaoyao完成签到 ,获得积分20
14秒前
LI完成签到,获得积分10
15秒前
16秒前
Emilio完成签到,获得积分10
17秒前
科研通AI2S应助实验的兔纸采纳,获得10
19秒前
共享精神应助小爽采纳,获得10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227991
求助须知:如何正确求助?哪些是违规求助? 2875925
关于积分的说明 8193014
捐赠科研通 2543101
什么是DOI,文献DOI怎么找? 1373445
科研通“疑难数据库(出版商)”最低求助积分说明 646756
邀请新用户注册赠送积分活动 621243