已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Splitting long‐term and short‐term financial ratios for improved financial distress prediction: Evidence from Taiwanese public companies

期限(时间) 财务困境 财务 业务 经济 精算学 金融体系 量子力学 物理
作者
Asyrofa Rahmi,Chia-Chi Lu,Deron Liang,Ayu Nur Fadilah
出处
期刊:Journal of Forecasting [Wiley]
标识
DOI:10.1002/for.3143
摘要

Abstract Financial distress occurs when a company cannot meet its financial obligations within a specified timeframe, often owing to prolonged poor operational performance. While studies on financial distress prediction (FDP) use financial ratios (FRs) to forecast distress, they neglect to differentiate long‐term (LT) attributes from FRs. To address this gap, our study introduces a novel model that distinguishes between LT and short‐term (ST) accounting attributes in FRs. Using data from Taiwanese public companies (1991–2018), our proposed model employs a stacking ensemble classifier to split LT and ST Altman's ratios. This study addresses three key questions: (1) Do models involving split of LT and ST ratios outperform those that combine them? (2) How reliable and robust are these proposed models? (3) What is the proposed model's impact on distress prediction? The results show a significant outperformance of the existing solution, with higher accuracy, lower Type I and Type II errors, and reduced misclassification costs. These models are reliable in handling imbalanced data, proving suitable for real‐market investigations. Diverse FR contexts from previous Taiwanese studies validate the distinction between LT and ST features, representing robust performance. This model identifies characteristics of correctly and incorrectly predicted distress in companies, providing nuanced insights into complex distress attributes. This study introduces a pioneering model demonstrating superior predictive accuracy, reliability, and robustness by considering the split between LT and ST accounting attributes. It lays a foundation for future studies to extend and refine the proposed model, offering valuable insights into the complex dynamics of FDP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大大怪完成签到 ,获得积分10
1秒前
5秒前
温暖的聪展完成签到 ,获得积分10
5秒前
wr完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
完成第一篇完成签到 ,获得积分10
9秒前
无限铸海发布了新的文献求助10
9秒前
结实的小土豆完成签到 ,获得积分10
13秒前
光亮的冰薇完成签到 ,获得积分10
16秒前
在水一方应助勤劳莹芝采纳,获得10
28秒前
orixero应助oyxz采纳,获得10
28秒前
HONG完成签到 ,获得积分10
29秒前
29秒前
Jasper应助科研通管家采纳,获得10
30秒前
木又应助科研通管家采纳,获得10
31秒前
SciGPT应助科研通管家采纳,获得10
31秒前
31秒前
Raven应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
哈基米德应助科研通管家采纳,获得10
31秒前
哈基米德应助科研通管家采纳,获得10
31秒前
31秒前
哈基米德应助科研通管家采纳,获得10
31秒前
哈基米德应助科研通管家采纳,获得25
31秒前
打打应助科研通管家采纳,获得10
31秒前
32秒前
彭于晏应助科研通管家采纳,获得10
32秒前
Criminology34应助科研通管家采纳,获得10
32秒前
科研通AI6应助科研通管家采纳,获得10
32秒前
酷波er应助科研通管家采纳,获得10
32秒前
科研通AI6应助科研通管家采纳,获得10
32秒前
FashionBoy应助科研通管家采纳,获得10
32秒前
xxfsx应助科研通管家采纳,获得10
32秒前
情怀应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290666
求助须知:如何正确求助?哪些是违规求助? 4442020
关于积分的说明 13828956
捐赠科研通 4324772
什么是DOI,文献DOI怎么找? 2373838
邀请新用户注册赠送积分活动 1369227
关于科研通互助平台的介绍 1333275