Splitting long‐term and short‐term financial ratios for improved financial distress prediction: Evidence from Taiwanese public companies

期限(时间) 财务困境 财务 业务 经济 精算学 金融体系 量子力学 物理
作者
Asyrofa Rahmi,Chia-Chi Lu,Deron Liang,Ayu Nur Fadilah
出处
期刊:Journal of Forecasting [Wiley]
标识
DOI:10.1002/for.3143
摘要

Abstract Financial distress occurs when a company cannot meet its financial obligations within a specified timeframe, often owing to prolonged poor operational performance. While studies on financial distress prediction (FDP) use financial ratios (FRs) to forecast distress, they neglect to differentiate long‐term (LT) attributes from FRs. To address this gap, our study introduces a novel model that distinguishes between LT and short‐term (ST) accounting attributes in FRs. Using data from Taiwanese public companies (1991–2018), our proposed model employs a stacking ensemble classifier to split LT and ST Altman's ratios. This study addresses three key questions: (1) Do models involving split of LT and ST ratios outperform those that combine them? (2) How reliable and robust are these proposed models? (3) What is the proposed model's impact on distress prediction? The results show a significant outperformance of the existing solution, with higher accuracy, lower Type I and Type II errors, and reduced misclassification costs. These models are reliable in handling imbalanced data, proving suitable for real‐market investigations. Diverse FR contexts from previous Taiwanese studies validate the distinction between LT and ST features, representing robust performance. This model identifies characteristics of correctly and incorrectly predicted distress in companies, providing nuanced insights into complex distress attributes. This study introduces a pioneering model demonstrating superior predictive accuracy, reliability, and robustness by considering the split between LT and ST accounting attributes. It lays a foundation for future studies to extend and refine the proposed model, offering valuable insights into the complex dynamics of FDP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
头哥应助MiManchi采纳,获得10
1秒前
李健应助zz采纳,获得10
1秒前
1秒前
1秒前
重楼远志完成签到,获得积分10
1秒前
123完成签到,获得积分10
1秒前
1秒前
Young应助时间采纳,获得10
2秒前
2秒前
小巧吐司完成签到,获得积分10
2秒前
3秒前
IceShock完成签到,获得积分10
3秒前
白蒲桃完成签到 ,获得积分10
3秒前
炙热面包完成签到,获得积分20
3秒前
大胆的如凡完成签到,获得积分10
4秒前
5秒前
你怎么睡得着觉完成签到,获得积分10
5秒前
可爱的函函应助Mrsummer采纳,获得10
5秒前
6秒前
Atopos发布了新的文献求助10
6秒前
ZFY关闭了ZFY文献求助
6秒前
6秒前
支安白发布了新的文献求助10
7秒前
7秒前
炙热面包发布了新的文献求助20
7秒前
7秒前
苏silence发布了新的文献求助10
7秒前
张锐斌完成签到,获得积分10
7秒前
594778089完成签到,获得积分20
7秒前
豆包完成签到,获得积分10
7秒前
shan完成签到,获得积分10
8秒前
Owen应助缥缈的青旋采纳,获得10
8秒前
dadabad完成签到 ,获得积分10
8秒前
凝若霜晨发布了新的文献求助10
8秒前
如常完成签到,获得积分10
10秒前
要奋斗的小番茄完成签到,获得积分10
10秒前
苻人英完成签到,获得积分10
10秒前
dr1nk完成签到,获得积分10
10秒前
10秒前
Lucas应助豆包采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005