Data-driven Contract Design for Supply Chain Coordination with Algorithm Sharing and Algorithm Competition

竞赛(生物学) 供应链 计算机科学 算法 产业组织 业务 营销 生态学 生物
作者
Zhen-Yu Chen,Minghe Sun
出处
期刊:IISE transactions [Taylor & Francis]
卷期号:: 1-17
标识
DOI:10.1080/24725854.2024.2361460
摘要

Supply chain members can intelligently learn their decisions based on historical data by using machine-learning (ML) algorithms. To coordinate the supply chain, the data-driven contract design problems for three contracts—buyback, quantity flexibility, and combined quantity flexibility and rebate—were investigated for a supply chain with one manufacturer and multiple retailers under algorithm sharing and algorithm competition. The problems were formulated as bi-level optimization models by introducing nonlinear mapping from historical demand data to ordering decisions and using ML algorithms to learn the mapping parameters. The bi-level optimization models were transformed into semi-infinite programming models and solved using the (nested) cutting plane methods. Empirical studies using data from two databases showed that algorithm sharing or algorithm competition, the type of contract used, and learning algorithms were the three factors influencing the performance of supply chain coordination when using a data-driven contract design. Algorithm sharing was found to be more beneficial to the supply chain members than algorithm competition in promoting supply chain coordination. An effective incentive mechanism, such as an individualized buyback ratio and a rebate from the manufacturer to the retailers with a good forecast performance, can encourage the retailers to participate in algorithm sharing and improvement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
群q发布了新的文献求助10
刚刚
2秒前
丁叮叮完成签到 ,获得积分10
2秒前
不弱发布了新的文献求助10
2秒前
2秒前
xs小仙女完成签到,获得积分10
3秒前
LiShin完成签到,获得积分10
3秒前
雷雷发布了新的文献求助10
4秒前
科研通AI5应助whisper采纳,获得10
6秒前
龙眼完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
怕黑的班完成签到,获得积分10
8秒前
英俊的铭应助lei采纳,获得10
9秒前
唐111完成签到,获得积分20
11秒前
axiao发布了新的文献求助10
12秒前
12秒前
tph完成签到 ,获得积分10
12秒前
哭泣灯泡应助就这样采纳,获得10
13秒前
江一山发布了新的文献求助10
13秒前
14秒前
辰良完成签到 ,获得积分10
14秒前
14秒前
冰魂应助婷婷采纳,获得10
14秒前
张成协发布了新的文献求助10
14秒前
90发布了新的文献求助10
15秒前
科研通AI5应助XHL采纳,获得10
16秒前
16秒前
16秒前
腼腆的立诚完成签到,获得积分10
17秒前
杨倩发布了新的文献求助10
18秒前
19秒前
19秒前
谦让的凝阳完成签到,获得积分10
20秒前
20秒前
Hello应助anders采纳,获得10
21秒前
22秒前
22秒前
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774793
求助须知:如何正确求助?哪些是违规求助? 3320610
关于积分的说明 10201149
捐赠科研通 3035379
什么是DOI,文献DOI怎么找? 1665498
邀请新用户注册赠送积分活动 796972
科研通“疑难数据库(出版商)”最低求助积分说明 757667