Tabu search based on novel neighborhood structures for solving job shop scheduling problem integrating finite transportation resources

禁忌搜索 作业车间调度 调度(生产过程) 工作车间 计算机科学 数学优化 运筹学 流水车间调度 工程类 工业工程 数学 地铁列车时刻表 算法 操作系统
作者
Youjie Yao,Lin Gui,Xinyu Li,Liang Gao
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier BV]
卷期号:89: 102782-102782 被引量:5
标识
DOI:10.1016/j.rcim.2024.102782
摘要

As advancements in transportation equipment intelligence continue, the job shop scheduling problem integrating finite transportation resources (JSPIFTR) has attracted considerable attention. Within the domain of shop scheduling, the neighborhood structure serves as a cornerstone for enabling intelligent optimization algorithms to effectively navigate and discover optimal solutions. However, current algorithms for JSPIFTR rely on generalized neighborhood structures, which incorporate operators like insertion and swap. While these structures are tailored to the encoding vectors, their utilization often leads to suboptimal optimization efficacy. To address this limitation, this paper introduces novel neighborhood structures specifically designed to the distinctive properties of JSPIFTR. These innovative structures leverage the intrinsic structural information in integrated scheduling, thereby enhancing the optimization effectiveness of the algorithm. Firstly, two theorems are presented to demonstrate the feasibility of the neighborhood solution. Secondly, different neighborhood structures for critical transportation and processing tasks are subsequently designed based on the analysis of the problem properties and constraints. Thirdly, an efficient fast evaluation method is developed to expediently calculate the objective value of the neighborhood solution. Finally, the novel neighborhood structures are combined with the tabu search (TS_NNS) and compared with other state-of-the-art methods on EX and NEX benchmarks. The comparative results demonstrate the remarkable performance of the neighborhood structure, with the TS_NNS enhancing the best solutions across 23 instances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KK发布了新的文献求助10
1秒前
2秒前
Norl_Corxilea发布了新的文献求助10
3秒前
CodeCraft应助愉快的宛儿采纳,获得10
4秒前
一方通行发布了新的文献求助10
4秒前
levicho完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
8秒前
Norl_Corxilea完成签到,获得积分10
9秒前
12秒前
我是老大应助Culto采纳,获得10
13秒前
15秒前
超帅青烟完成签到,获得积分10
15秒前
15秒前
科目三应助KK采纳,获得10
16秒前
Shuaibin_Pei完成签到,获得积分10
19秒前
张今天也要做科研呀完成签到,获得积分10
19秒前
shinysparrow完成签到,获得积分0
19秒前
传奇3应助LJJ采纳,获得10
20秒前
21秒前
22秒前
科研蚂蚁完成签到,获得积分10
23秒前
桃子完成签到 ,获得积分10
23秒前
魁梧的鲂发布了新的文献求助10
26秒前
健忘白应助su采纳,获得10
26秒前
Culto发布了新的文献求助10
27秒前
28秒前
猫猫完成签到,获得积分10
29秒前
31秒前
momo发布了新的文献求助10
32秒前
小宇子发布了新的文献求助10
32秒前
Mr兔仙森完成签到,获得积分10
33秒前
LJJ发布了新的文献求助10
34秒前
34秒前
Culto完成签到,获得积分10
35秒前
36秒前
JIE完成签到,获得积分10
36秒前
houjibofa发布了新的文献求助10
37秒前
田様应助幽默平安采纳,获得10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173