数量性状位点
生物
表达数量性状基因座
遗传学
计算生物学
全基因组关联研究
转录组
基因
RNA序列
核糖核酸
基因表达
单核苷酸多态性
基因型
作者
Daniel Munro,Nava Ehsan,Seyed Mehdi Esmaeili-Fard,Alexander Gusev,Abraham A. Palmer,Pejman Mohammadi
标识
DOI:10.1101/2024.05.14.594051
摘要
Transcriptome data is commonly used to understand genome function via quantitative trait loci (QTL) mapping and to identify the molecular mechanisms driving genome wide association study (GWAS) signals through colocalization analysis and transcriptome-wide association studies (TWAS). While RNA sequencing (RNA-seq) has the potential to reveal many modalities of transcriptional regulation, such as various splicing phenotypes, such studies are often limited to gene expression due to the complexity of extracting and analyzing multiple RNA phenotypes. Here, we present Pantry (Pan-transcriptomic phenotyping), a framework to efficiently generate diverse RNA phenotypes from RNA-seq data and perform downstream integrative analyses with genetic data. Pantry currently generates phenotypes from six modalities of transcriptional regulation (gene expression, isoform ratios, splice junction usage, alternative TSS/polyA usage, and RNA stability) and integrates them with genetic data via QTL mapping, TWAS, and colocalization testing. We applied Pantry to Geuvadis and GTEx data, and found that 4,768 of the genes with no identified expression QTL in Geuvadis had QTLs in at least one other transcriptional modality, resulting in a 66% increase in genes over expression QTL mapping. We further found that QTLs exhibit modality-specific functional properties that are further reinforced by joint analysis of different RNA modalities. We also show that generalizing TWAS to multiple RNA modalities (xTWAS) approximately doubles the discovery of unique gene-trait associations, and enhances identification of regulatory mechanisms underlying GWAS signal in 42% of previously associated gene-trait pairs. We provide the Pantry code, RNA phenotypes from all Geuvadis and GTEx samples, and xQTL and xTWAS results on the web.
科研通智能强力驱动
Strongly Powered by AbleSci AI