BEVRefiner: Improving 3D Object Detection in Bird’s-Eye-View via Dual Refinement

对偶(语法数字) 计算机科学 计算机视觉 目标检测 人工智能 对象(语法) 模式识别(心理学) 文学类 艺术
作者
Binglu Wang,Haowen Zheng,Lei Zhang,Nian Liu,Rao Muhammad Anwer,Hisham Cholakkal,Yongqiang Zhao,Zhijun Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 15094-15105 被引量:7
标识
DOI:10.1109/tits.2024.3394550
摘要

Many multi-view camera-based 3D object detection models transform the image features into Bird's-Eye-View (BEV) via the Lift-Splat-Shoot (LSS) mechanism, which "lifts" 2D camera-view features to the 3D voxel space based on the predicted depth distribution and then "splats" 3D features into a BEV plane for subsequent 3D object detection. However, the BEV feature in such a one-stage view transformation scheme heavily relies on the quality of the predicted depth distribution and 2D camera-view features, which further determines the final detection performance. In this paper, we propose a BEVRefiner model which performs dual refinement for both depth prediction and 2D camera-view features. On the one hand, we perform light-weight depth refinement in the depth distribution frustum space by incorporating 3D context and depth distribution prior. On the other hand, we reproject the BEV feature back to each camera view to enhance 2D image features. In this way, the original camera-view features can be enhanced by implicitly incorporating 3D contexts and multi-view contexts, which cannot be achieved in the original 2D camera view. We also propose to use dominant depth bins only for the reprojection to save computational burden. Finally, we generate the refined BEV feature using the refined depth distribution and camera-view features for more accurate 3D object detection. Our BEVRefiner can be plugged into LSS-based BEV detectors and we perform extensive experiments on the representative model BEVDet, which strongly verified the efficiency of our proposed approach under several settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刘佳豪完成签到,获得积分10
2秒前
dd完成签到,获得积分10
3秒前
核桃发布了新的文献求助10
3秒前
科研通AI2S应助大吉采纳,获得10
4秒前
蓝莓发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
领导范儿应助El采纳,获得30
6秒前
Lucas应助momo采纳,获得10
7秒前
西西里关注了科研通微信公众号
8秒前
今天也要好好学习完成签到,获得积分10
8秒前
善学以致用应助细心尔蓝采纳,获得10
9秒前
9秒前
wanci应助Ll采纳,获得30
10秒前
研友_ZAVod8完成签到,获得积分10
10秒前
shinian发布了新的文献求助10
10秒前
Maymay完成签到 ,获得积分10
10秒前
lwei完成签到,获得积分20
10秒前
爆米花应助广发牛勿采纳,获得10
10秒前
10秒前
张慧蓉发布了新的文献求助10
11秒前
原山何野发布了新的文献求助10
11秒前
12秒前
852应助xiaoluo采纳,获得10
12秒前
12秒前
赖嘉顿发布了新的文献求助10
12秒前
12秒前
花见月开发布了新的文献求助10
12秒前
13秒前
Jasper应助sunset采纳,获得10
13秒前
14秒前
打打应助盛欢采纳,获得10
14秒前
14秒前
15秒前
乌拉拉关注了科研通微信公众号
15秒前
情怀应助神勇的女孩采纳,获得10
15秒前
15秒前
赖嘉顿发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321239
求助须知:如何正确求助?哪些是违规求助? 4463064
关于积分的说明 13888665
捐赠科研通 4354148
什么是DOI,文献DOI怎么找? 2391585
邀请新用户注册赠送积分活动 1385183
关于科研通互助平台的介绍 1354924