BEVRefiner: Improving 3D Object Detection in Bird’s-Eye-View via Dual Refinement

对偶(语法数字) 计算机科学 计算机视觉 目标检测 人工智能 对象(语法) 模式识别(心理学) 文学类 艺术
作者
Binglu Wang,Haowen Zheng,Lei Zhang,Nian Liu,Rao Muhammad Anwer,Hisham Cholakkal,Yongqiang Zhao,Zhijun Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 15094-15105 被引量:7
标识
DOI:10.1109/tits.2024.3394550
摘要

Many multi-view camera-based 3D object detection models transform the image features into Bird's-Eye-View (BEV) via the Lift-Splat-Shoot (LSS) mechanism, which "lifts" 2D camera-view features to the 3D voxel space based on the predicted depth distribution and then "splats" 3D features into a BEV plane for subsequent 3D object detection. However, the BEV feature in such a one-stage view transformation scheme heavily relies on the quality of the predicted depth distribution and 2D camera-view features, which further determines the final detection performance. In this paper, we propose a BEVRefiner model which performs dual refinement for both depth prediction and 2D camera-view features. On the one hand, we perform light-weight depth refinement in the depth distribution frustum space by incorporating 3D context and depth distribution prior. On the other hand, we reproject the BEV feature back to each camera view to enhance 2D image features. In this way, the original camera-view features can be enhanced by implicitly incorporating 3D contexts and multi-view contexts, which cannot be achieved in the original 2D camera view. We also propose to use dominant depth bins only for the reprojection to save computational burden. Finally, we generate the refined BEV feature using the refined depth distribution and camera-view features for more accurate 3D object detection. Our BEVRefiner can be plugged into LSS-based BEV detectors and we perform extensive experiments on the representative model BEVDet, which strongly verified the efficiency of our proposed approach under several settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助ye采纳,获得10
刚刚
132发布了新的文献求助10
刚刚
牛肉mianbo发布了新的文献求助10
刚刚
xxf发布了新的文献求助10
刚刚
隐形曼青应助xiaomage采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
小丸子的樱桃红完成签到,获得积分10
3秒前
邱文县发布了新的文献求助10
3秒前
Mao关闭了Mao文献求助
3秒前
小郭完成签到,获得积分10
3秒前
jzt12138发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
FranklinQaQ完成签到,获得积分10
5秒前
5秒前
三莫莫莫发布了新的文献求助20
5秒前
大模型应助荒林采纳,获得30
5秒前
尔舟行发布了新的文献求助10
5秒前
6秒前
6秒前
大营村完成签到,获得积分10
6秒前
7秒前
实验顺利完成签到 ,获得积分20
8秒前
伪话痨家发布了新的文献求助30
8秒前
balenidezhupi发布了新的文献求助10
8秒前
9秒前
9秒前
tutu发布了新的文献求助10
9秒前
科研狗完成签到,获得积分10
9秒前
直率铃铛2发布了新的文献求助10
9秒前
核桃应助哦哦采纳,获得30
10秒前
11秒前
研究啥完成签到,获得积分20
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
重要建辉发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667