BEVRefiner: Improving 3D Object Detection in Bird’s-Eye-View via Dual Refinement

对偶(语法数字) 计算机科学 计算机视觉 目标检测 人工智能 对象(语法) 模式识别(心理学) 文学类 艺术
作者
Binglu Wang,Haowen Zheng,Lei Zhang,Nian Liu,Rao Muhammad Anwer,Hisham Cholakkal,Yongqiang Zhao,Zhijun Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 15094-15105 被引量:7
标识
DOI:10.1109/tits.2024.3394550
摘要

Many multi-view camera-based 3D object detection models transform the image features into Bird's-Eye-View (BEV) via the Lift-Splat-Shoot (LSS) mechanism, which "lifts" 2D camera-view features to the 3D voxel space based on the predicted depth distribution and then "splats" 3D features into a BEV plane for subsequent 3D object detection. However, the BEV feature in such a one-stage view transformation scheme heavily relies on the quality of the predicted depth distribution and 2D camera-view features, which further determines the final detection performance. In this paper, we propose a BEVRefiner model which performs dual refinement for both depth prediction and 2D camera-view features. On the one hand, we perform light-weight depth refinement in the depth distribution frustum space by incorporating 3D context and depth distribution prior. On the other hand, we reproject the BEV feature back to each camera view to enhance 2D image features. In this way, the original camera-view features can be enhanced by implicitly incorporating 3D contexts and multi-view contexts, which cannot be achieved in the original 2D camera view. We also propose to use dominant depth bins only for the reprojection to save computational burden. Finally, we generate the refined BEV feature using the refined depth distribution and camera-view features for more accurate 3D object detection. Our BEVRefiner can be plugged into LSS-based BEV detectors and we perform extensive experiments on the representative model BEVDet, which strongly verified the efficiency of our proposed approach under several settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Left发布了新的文献求助20
刚刚
小黄人完成签到,获得积分10
刚刚
刚刚
西地兰卡发布了新的文献求助10
刚刚
笑容可圈可点完成签到,获得积分10
刚刚
小蘑菇应助April采纳,获得10
刚刚
很美味发布了新的文献求助10
1秒前
嘻嘻哈哈完成签到 ,获得积分10
1秒前
大模型应助夕荀采纳,获得10
1秒前
1秒前
fh发布了新的文献求助10
2秒前
油菜花完成签到,获得积分10
2秒前
Owen应助多喝白开水采纳,获得10
2秒前
LAN完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
帅气不惜完成签到,获得积分10
2秒前
张朔发布了新的文献求助10
2秒前
玖玖发布了新的文献求助10
2秒前
3秒前
哈哈哈哈哈哈完成签到,获得积分10
3秒前
迷你的傲白完成签到 ,获得积分10
3秒前
亦安完成签到,获得积分10
3秒前
zpp完成签到,获得积分10
3秒前
奔波霸完成签到,获得积分10
3秒前
苏silence发布了新的文献求助10
3秒前
Angelo完成签到 ,获得积分10
3秒前
雷雷完成签到 ,获得积分10
4秒前
@@@完成签到,获得积分20
4秒前
IceShock发布了新的文献求助10
4秒前
赚钱的君完成签到,获得积分10
5秒前
铁柱完成签到,获得积分10
5秒前
5秒前
孟一完成签到,获得积分10
5秒前
LIU完成签到 ,获得积分10
5秒前
5秒前
5秒前
charon完成签到,获得积分10
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005