Longitudinal ultrasound-based AI model predicts axillary lymph node response to neoadjuvant chemotherapy in breast cancer: a multicenter study

超声学家 医学 乳腺癌 放射科 超声波 淋巴结 回声 前哨淋巴结 内科学 癌症
作者
Ying Fu,Yutao Lei,Yühong Huang,Mei Fang,Song Wang,Kun Yan,Yihua Wang,Yihan Ma,Ligang Cui
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:34 (11): 7080-7089 被引量:6
标识
DOI:10.1007/s00330-024-10786-5
摘要

Abstract Objectives Developing a deep learning radiomics model from longitudinal breast ultrasound and sonographer’s axillary ultrasound diagnosis for predicting axillary lymph node (ALN) response to neoadjuvant chemotherapy (NAC) in breast cancer. Methods Breast cancer patients undergoing NAC followed by surgery were recruited from three centers between November 2016 and December 2022. We collected ultrasound images for extracting tumor-derived radiomics and deep learning features, selecting quantitative features through various methods. Two machine learning models based on random forest were developed using pre-NAC and post-NAC features. A support vector machine integrated these data into a fusion model, evaluated via the area under the curve (AUC), decision curve analysis, and calibration curves. We compared the fusion model’s performance against sonographer’s diagnosis from pre-NAC and post-NAC axillary ultrasonography, referencing histological outcomes from sentinel lymph node biopsy or axillary lymph node dissection. Results In the validation cohort, the fusion model outperformed both pre-NAC (AUC: 0.899 vs. 0.786, p < 0.001) and post-NAC models (AUC: 0.899 vs. 0.853, p = 0.014), as well as the sonographer’s diagnosis of ALN status on pre-NAC and post-NAC axillary ultrasonography (AUC: 0.899 vs. 0.719, p < 0.001). Decision curve analysis revealed patient benefits from the fusion model across threshold probabilities from 0.02 to 0.98. The model also enhanced sonographer’s diagnostic ability, increasing accuracy from 71.9% to 79.2%. Conclusion The deep learning radiomics model accurately predicted the ALN response to NAC in breast cancer. Furthermore, the model will assist sonographers to improve their diagnostic ability on ALN status before surgery. Clinical relevance statement Our AI model based on pre- and post-neoadjuvant chemotherapy ultrasound can accurately predict axillary lymph node metastasis and assist sonographer’s axillary diagnosis. Key Points Axillary lymph node metastasis status affects the choice of surgical treatment, and currently relies on subjective ultrasound . Our AI model outperformed sonographer’s visual diagnosis on axillary ultrasound . Our deep learning radiomics model can improve sonographers’ diagnosis and might assist in surgical decision-making .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助满满采纳,获得10
1秒前
1秒前
1秒前
高兴绿柳完成签到 ,获得积分10
2秒前
2秒前
榆岸完成签到,获得积分10
2秒前
3秒前
谦让的苡完成签到 ,获得积分10
3秒前
舒心怀寒发布了新的文献求助10
3秒前
在水一方应助WY采纳,获得30
4秒前
CipherSage应助熊尼采纳,获得10
4秒前
5秒前
雅杰关注了科研通微信公众号
5秒前
充电宝应助leo采纳,获得10
6秒前
6秒前
仁爱的依波完成签到,获得积分20
6秒前
hzl发布了新的文献求助10
6秒前
Suyi发布了新的文献求助10
7秒前
7秒前
桐桐应助踏实妙晴采纳,获得10
7秒前
8秒前
8秒前
科研通AI6应助爱笑小笼包采纳,获得10
8秒前
8秒前
方囧完成签到,获得积分10
9秒前
zzdd完成签到,获得积分20
9秒前
科研通AI5应助jingjing采纳,获得30
9秒前
10秒前
小莨完成签到,获得积分10
10秒前
不担心完成签到,获得积分10
10秒前
10秒前
10秒前
尉迟希望应助聪明的采枫采纳,获得10
11秒前
习惯ing完成签到,获得积分10
14秒前
14秒前
nan应助好人采纳,获得10
14秒前
cnulee完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074774
求助须知:如何正确求助?哪些是违规求助? 4294788
关于积分的说明 13382331
捐赠科研通 4116380
什么是DOI,文献DOI怎么找? 2254214
邀请新用户注册赠送积分活动 1258791
关于科研通互助平台的介绍 1191687