Longitudinal ultrasound-based AI model predicts axillary lymph node response to neoadjuvant chemotherapy in breast cancer: a multicenter study

超声学家 医学 乳腺癌 放射科 超声波 淋巴结 回声 前哨淋巴结 内科学 癌症
作者
Ying Fu,Yutao Lei,Yühong Huang,Mei Fang,Song Wang,Kun Yan,Yihua Wang,Yihan Ma,Ligang Cui
出处
期刊:European Radiology [Springer Nature]
卷期号:34 (11): 7080-7089 被引量:6
标识
DOI:10.1007/s00330-024-10786-5
摘要

Abstract Objectives Developing a deep learning radiomics model from longitudinal breast ultrasound and sonographer’s axillary ultrasound diagnosis for predicting axillary lymph node (ALN) response to neoadjuvant chemotherapy (NAC) in breast cancer. Methods Breast cancer patients undergoing NAC followed by surgery were recruited from three centers between November 2016 and December 2022. We collected ultrasound images for extracting tumor-derived radiomics and deep learning features, selecting quantitative features through various methods. Two machine learning models based on random forest were developed using pre-NAC and post-NAC features. A support vector machine integrated these data into a fusion model, evaluated via the area under the curve (AUC), decision curve analysis, and calibration curves. We compared the fusion model’s performance against sonographer’s diagnosis from pre-NAC and post-NAC axillary ultrasonography, referencing histological outcomes from sentinel lymph node biopsy or axillary lymph node dissection. Results In the validation cohort, the fusion model outperformed both pre-NAC (AUC: 0.899 vs. 0.786, p < 0.001) and post-NAC models (AUC: 0.899 vs. 0.853, p = 0.014), as well as the sonographer’s diagnosis of ALN status on pre-NAC and post-NAC axillary ultrasonography (AUC: 0.899 vs. 0.719, p < 0.001). Decision curve analysis revealed patient benefits from the fusion model across threshold probabilities from 0.02 to 0.98. The model also enhanced sonographer’s diagnostic ability, increasing accuracy from 71.9% to 79.2%. Conclusion The deep learning radiomics model accurately predicted the ALN response to NAC in breast cancer. Furthermore, the model will assist sonographers to improve their diagnostic ability on ALN status before surgery. Clinical relevance statement Our AI model based on pre- and post-neoadjuvant chemotherapy ultrasound can accurately predict axillary lymph node metastasis and assist sonographer’s axillary diagnosis. Key Points Axillary lymph node metastasis status affects the choice of surgical treatment, and currently relies on subjective ultrasound . Our AI model outperformed sonographer’s visual diagnosis on axillary ultrasound . Our deep learning radiomics model can improve sonographers’ diagnosis and might assist in surgical decision-making .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
myth发布了新的文献求助10
刚刚
烂漫起眸完成签到,获得积分10
刚刚
ironsilica完成签到,获得积分10
刚刚
1秒前
往事随风完成签到,获得积分10
1秒前
Duckseid完成签到,获得积分10
1秒前
Breez2004完成签到,获得积分20
1秒前
舒心小凡完成签到,获得积分10
1秒前
jane完成签到 ,获得积分10
2秒前
Maestro_S发布了新的文献求助10
2秒前
3秒前
3秒前
恣意完成签到 ,获得积分10
3秒前
能干的吐司完成签到,获得积分10
3秒前
尹文发布了新的文献求助10
4秒前
情怀应助傲娇平蝶采纳,获得10
4秒前
迷你的冰巧完成签到,获得积分10
5秒前
里苏特完成签到,获得积分10
6秒前
鳗鱼契完成签到,获得积分10
6秒前
樊小雾完成签到,获得积分10
6秒前
zpc发布了新的文献求助10
6秒前
十一完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
miya完成签到 ,获得积分10
7秒前
7秒前
柔弱的问梅完成签到,获得积分10
8秒前
乐乐应助Litoivda采纳,获得10
9秒前
香蕉诗蕊完成签到,获得积分0
9秒前
香蕉觅云应助HAOHAO采纳,获得10
9秒前
jianjiao完成签到,获得积分10
10秒前
尹文完成签到,获得积分20
10秒前
Persevere完成签到,获得积分10
11秒前
认真台灯完成签到 ,获得积分10
11秒前
11秒前
湛湛完成签到,获得积分10
12秒前
lcj完成签到,获得积分10
13秒前
肥奇力完成签到,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
xuebinxu完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715880
求助须知:如何正确求助?哪些是违规求助? 5237687
关于积分的说明 15275397
捐赠科研通 4866497
什么是DOI,文献DOI怎么找? 2613022
邀请新用户注册赠送积分活动 1563137
关于科研通互助平台的介绍 1520689