Longitudinal ultrasound-based AI model predicts axillary lymph node response to neoadjuvant chemotherapy in breast cancer: a multicenter study

超声学家 医学 乳腺癌 放射科 超声波 淋巴结 回声 前哨淋巴结 内科学 癌症
作者
Ying Fu,Yutao Lei,Yühong Huang,Mei Fang,Song Wang,Kun Yan,Yihua Wang,Yihan Ma,Ligang Cui
出处
期刊:European Radiology [Springer Nature]
卷期号:34 (11): 7080-7089 被引量:2
标识
DOI:10.1007/s00330-024-10786-5
摘要

Abstract Objectives Developing a deep learning radiomics model from longitudinal breast ultrasound and sonographer’s axillary ultrasound diagnosis for predicting axillary lymph node (ALN) response to neoadjuvant chemotherapy (NAC) in breast cancer. Methods Breast cancer patients undergoing NAC followed by surgery were recruited from three centers between November 2016 and December 2022. We collected ultrasound images for extracting tumor-derived radiomics and deep learning features, selecting quantitative features through various methods. Two machine learning models based on random forest were developed using pre-NAC and post-NAC features. A support vector machine integrated these data into a fusion model, evaluated via the area under the curve (AUC), decision curve analysis, and calibration curves. We compared the fusion model’s performance against sonographer’s diagnosis from pre-NAC and post-NAC axillary ultrasonography, referencing histological outcomes from sentinel lymph node biopsy or axillary lymph node dissection. Results In the validation cohort, the fusion model outperformed both pre-NAC (AUC: 0.899 vs. 0.786, p < 0.001) and post-NAC models (AUC: 0.899 vs. 0.853, p = 0.014), as well as the sonographer’s diagnosis of ALN status on pre-NAC and post-NAC axillary ultrasonography (AUC: 0.899 vs. 0.719, p < 0.001). Decision curve analysis revealed patient benefits from the fusion model across threshold probabilities from 0.02 to 0.98. The model also enhanced sonographer’s diagnostic ability, increasing accuracy from 71.9% to 79.2%. Conclusion The deep learning radiomics model accurately predicted the ALN response to NAC in breast cancer. Furthermore, the model will assist sonographers to improve their diagnostic ability on ALN status before surgery. Clinical relevance statement Our AI model based on pre- and post-neoadjuvant chemotherapy ultrasound can accurately predict axillary lymph node metastasis and assist sonographer’s axillary diagnosis. Key Points Axillary lymph node metastasis status affects the choice of surgical treatment, and currently relies on subjective ultrasound . Our AI model outperformed sonographer’s visual diagnosis on axillary ultrasound . Our deep learning radiomics model can improve sonographers’ diagnosis and might assist in surgical decision-making .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能的小叮当完成签到,获得积分0
1秒前
2秒前
Gser完成签到,获得积分10
2秒前
落寞白曼完成签到,获得积分10
3秒前
4秒前
帝蒼完成签到,获得积分10
4秒前
松松完成签到 ,获得积分10
5秒前
ckz完成签到,获得积分10
5秒前
6秒前
QYR完成签到,获得积分10
7秒前
清秀的砖头完成签到,获得积分10
8秒前
闵凝竹完成签到 ,获得积分10
9秒前
ZhY完成签到,获得积分10
10秒前
Xiangguang完成签到,获得积分10
10秒前
茉莉静颖完成签到,获得积分10
10秒前
13秒前
zmx完成签到 ,获得积分10
14秒前
caffeine应助Steven采纳,获得10
16秒前
小郝已经读博完成签到 ,获得积分10
16秒前
鲜于以云完成签到,获得积分10
17秒前
好名字完成签到,获得积分10
17秒前
玉鱼儿完成签到 ,获得积分10
17秒前
鸢尾松茶完成签到 ,获得积分10
17秒前
18秒前
19秒前
aaaa完成签到,获得积分10
20秒前
李健的小迷弟应助树池采纳,获得10
21秒前
大白完成签到,获得积分10
21秒前
全球发布了新的文献求助10
21秒前
23秒前
林林完成签到,获得积分10
23秒前
woo完成签到,获得积分10
24秒前
端庄的毛豆完成签到,获得积分10
26秒前
惜寒完成签到 ,获得积分10
26秒前
科研小垃圾应助HXJT采纳,获得10
28秒前
高兴的鹤完成签到,获得积分10
28秒前
28秒前
小灰灰完成签到 ,获得积分10
28秒前
29秒前
冰淇淋发布了新的文献求助20
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162599
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900687
捐赠科研通 2473052
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631452
版权声明 602175