已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Longitudinal ultrasound-based AI model predicts axillary lymph node response to neoadjuvant chemotherapy in breast cancer: a multicenter study

超声学家 医学 乳腺癌 放射科 超声波 淋巴结 回声 前哨淋巴结 内科学 癌症
作者
Ying Fu,Yutao Lei,Yühong Huang,Mei Fang,Song Wang,Kun Yan,Yihua Wang,Yihan Ma,Ligang Cui
出处
期刊:European Radiology [Springer Nature]
卷期号:34 (11): 7080-7089 被引量:6
标识
DOI:10.1007/s00330-024-10786-5
摘要

Abstract Objectives Developing a deep learning radiomics model from longitudinal breast ultrasound and sonographer’s axillary ultrasound diagnosis for predicting axillary lymph node (ALN) response to neoadjuvant chemotherapy (NAC) in breast cancer. Methods Breast cancer patients undergoing NAC followed by surgery were recruited from three centers between November 2016 and December 2022. We collected ultrasound images for extracting tumor-derived radiomics and deep learning features, selecting quantitative features through various methods. Two machine learning models based on random forest were developed using pre-NAC and post-NAC features. A support vector machine integrated these data into a fusion model, evaluated via the area under the curve (AUC), decision curve analysis, and calibration curves. We compared the fusion model’s performance against sonographer’s diagnosis from pre-NAC and post-NAC axillary ultrasonography, referencing histological outcomes from sentinel lymph node biopsy or axillary lymph node dissection. Results In the validation cohort, the fusion model outperformed both pre-NAC (AUC: 0.899 vs. 0.786, p < 0.001) and post-NAC models (AUC: 0.899 vs. 0.853, p = 0.014), as well as the sonographer’s diagnosis of ALN status on pre-NAC and post-NAC axillary ultrasonography (AUC: 0.899 vs. 0.719, p < 0.001). Decision curve analysis revealed patient benefits from the fusion model across threshold probabilities from 0.02 to 0.98. The model also enhanced sonographer’s diagnostic ability, increasing accuracy from 71.9% to 79.2%. Conclusion The deep learning radiomics model accurately predicted the ALN response to NAC in breast cancer. Furthermore, the model will assist sonographers to improve their diagnostic ability on ALN status before surgery. Clinical relevance statement Our AI model based on pre- and post-neoadjuvant chemotherapy ultrasound can accurately predict axillary lymph node metastasis and assist sonographer’s axillary diagnosis. Key Points Axillary lymph node metastasis status affects the choice of surgical treatment, and currently relies on subjective ultrasound . Our AI model outperformed sonographer’s visual diagnosis on axillary ultrasound . Our deep learning radiomics model can improve sonographers’ diagnosis and might assist in surgical decision-making .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
上官若男应助gaijiaofanv采纳,获得10
2秒前
江氏巨颏虎完成签到,获得积分10
3秒前
莉莉斯完成签到 ,获得积分10
6秒前
CallMeIris发布了新的文献求助10
7秒前
9秒前
Crh完成签到 ,获得积分20
10秒前
10秒前
yiyixt完成签到 ,获得积分10
13秒前
synlivie发布了新的文献求助10
15秒前
楠楠2001完成签到 ,获得积分10
15秒前
莫春莹完成签到 ,获得积分10
15秒前
Akim应助Sun采纳,获得10
17秒前
CallMeIris完成签到,获得积分10
18秒前
大瓜完成签到,获得积分10
19秒前
mhb完成签到 ,获得积分20
22秒前
lucky完成签到 ,获得积分10
22秒前
小谭完成签到 ,获得积分10
23秒前
24秒前
24秒前
28秒前
OOK发布了新的文献求助10
29秒前
31秒前
充电宝应助包子吃多了采纳,获得10
31秒前
Crh发布了新的文献求助10
32秒前
T1aNer299发布了新的文献求助10
36秒前
不配.应助田帅采纳,获得50
38秒前
懒羊羊给懒羊羊的求助进行了留言
38秒前
SGOM完成签到 ,获得积分10
39秒前
40秒前
Jasper应助T1aNer299采纳,获得10
41秒前
41秒前
FashionBoy应助XL神放采纳,获得10
41秒前
48秒前
50秒前
财年完成签到,获得积分10
51秒前
上官若男应助Cynthia_z采纳,获得10
53秒前
53秒前
文静的摩托完成签到,获得积分10
54秒前
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482204
求助须知:如何正确求助?哪些是违规求助? 4583107
关于积分的说明 14388592
捐赠科研通 4512046
什么是DOI,文献DOI怎么找? 2472675
邀请新用户注册赠送积分活动 1458955
关于科研通互助平台的介绍 1432326