Longitudinal ultrasound-based AI model predicts axillary lymph node response to neoadjuvant chemotherapy in breast cancer: a multicenter study

超声学家 医学 乳腺癌 放射科 超声波 淋巴结 回声 前哨淋巴结 内科学 癌症
作者
Ying Fu,Yutao Lei,Yühong Huang,Mei Fang,Song Wang,Kun Yan,Yihua Wang,Yihan Ma,Ligang Cui
出处
期刊:European Radiology [Springer Nature]
卷期号:34 (11): 7080-7089 被引量:6
标识
DOI:10.1007/s00330-024-10786-5
摘要

Abstract Objectives Developing a deep learning radiomics model from longitudinal breast ultrasound and sonographer’s axillary ultrasound diagnosis for predicting axillary lymph node (ALN) response to neoadjuvant chemotherapy (NAC) in breast cancer. Methods Breast cancer patients undergoing NAC followed by surgery were recruited from three centers between November 2016 and December 2022. We collected ultrasound images for extracting tumor-derived radiomics and deep learning features, selecting quantitative features through various methods. Two machine learning models based on random forest were developed using pre-NAC and post-NAC features. A support vector machine integrated these data into a fusion model, evaluated via the area under the curve (AUC), decision curve analysis, and calibration curves. We compared the fusion model’s performance against sonographer’s diagnosis from pre-NAC and post-NAC axillary ultrasonography, referencing histological outcomes from sentinel lymph node biopsy or axillary lymph node dissection. Results In the validation cohort, the fusion model outperformed both pre-NAC (AUC: 0.899 vs. 0.786, p < 0.001) and post-NAC models (AUC: 0.899 vs. 0.853, p = 0.014), as well as the sonographer’s diagnosis of ALN status on pre-NAC and post-NAC axillary ultrasonography (AUC: 0.899 vs. 0.719, p < 0.001). Decision curve analysis revealed patient benefits from the fusion model across threshold probabilities from 0.02 to 0.98. The model also enhanced sonographer’s diagnostic ability, increasing accuracy from 71.9% to 79.2%. Conclusion The deep learning radiomics model accurately predicted the ALN response to NAC in breast cancer. Furthermore, the model will assist sonographers to improve their diagnostic ability on ALN status before surgery. Clinical relevance statement Our AI model based on pre- and post-neoadjuvant chemotherapy ultrasound can accurately predict axillary lymph node metastasis and assist sonographer’s axillary diagnosis. Key Points Axillary lymph node metastasis status affects the choice of surgical treatment, and currently relies on subjective ultrasound . Our AI model outperformed sonographer’s visual diagnosis on axillary ultrasound . Our deep learning radiomics model can improve sonographers’ diagnosis and might assist in surgical decision-making .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上善若水呦完成签到 ,获得积分10
2秒前
zhendezy完成签到,获得积分10
2秒前
科研小白完成签到 ,获得积分10
3秒前
Sammybiu完成签到,获得积分10
4秒前
Ivan完成签到 ,获得积分10
4秒前
英吉利25发布了新的文献求助10
6秒前
是我不得开心妍完成签到 ,获得积分10
6秒前
Monkey_Z完成签到,获得积分10
7秒前
鲸落完成签到 ,获得积分10
8秒前
10秒前
Silence完成签到 ,获得积分10
10秒前
miku完成签到 ,获得积分10
10秒前
WENS完成签到,获得积分10
11秒前
等待的代容完成签到,获得积分10
11秒前
leo完成签到,获得积分10
11秒前
mechefy完成签到,获得积分10
12秒前
一颗红葡萄完成签到 ,获得积分10
13秒前
西奥牧马完成签到 ,获得积分10
13秒前
14秒前
dldldl完成签到,获得积分10
14秒前
只争朝夕完成签到,获得积分10
14秒前
芬芬完成签到 ,获得积分10
15秒前
superZ完成签到,获得积分10
16秒前
16秒前
欧阳月空完成签到,获得积分10
16秒前
桥豆麻袋完成签到,获得积分10
18秒前
越野完成签到 ,获得积分10
18秒前
20秒前
Beverly完成签到,获得积分10
21秒前
Yangyang完成签到,获得积分10
22秒前
zhang5657发布了新的文献求助10
22秒前
RRRickyyy完成签到 ,获得积分10
22秒前
满集完成签到 ,获得积分10
23秒前
大王具足虫完成签到,获得积分0
23秒前
明时完成签到,获得积分10
23秒前
哒哒哒完成签到,获得积分10
24秒前
勤恳靖巧完成签到 ,获得积分10
25秒前
25秒前
隔水一路秋完成签到,获得积分10
25秒前
司佳雨完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645116
求助须知:如何正确求助?哪些是违规求助? 4767817
关于积分的说明 15026487
捐赠科研通 4803543
什么是DOI,文献DOI怎么找? 2568387
邀请新用户注册赠送积分活动 1525701
关于科研通互助平台的介绍 1485332