亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analysis of drivers’ take-over ability improvement and behavioral steady state in human–machine codriving vehicles

国家(计算机科学) 计算机科学 稳态(化学) 心理学 汽车工程 模拟 人工智能 工程类 算法 化学 物理化学
作者
Ya Gao,Zhongxiang Feng,Dianchen Zhu,Jiabin Zeng,Xiaoshan Lu,Zhipeng Huang,Tao Gu
出处
期刊:Transportation Research Part F-traffic Psychology and Behaviour [Elsevier]
卷期号:103: 554-573
标识
DOI:10.1016/j.trf.2024.05.007
摘要

During human–machine codriving, drivers need to take over the vehicle when a take-over request (TOR) appears. If drivers have not received relevant training before driving, they may be unable to complete the take-over within the limited time, or the stability of subsequent vehicle control may be insufficient, which can lead to accidents. In this study, two types of take-over ability improvement methods are proposed. Participants were recruited and randomly divided into a control group (n = 15, no take-over training) and two experimental groups (n = 15, text-based training; n = 15, behavioral spectrum-based training). One-way ANOVA or the Kruskal–Wallis test and post hoc contrasts were used to analyze the differences in data indicators between the three groups of drivers after 20 take-over operations, and another method was proposed to validate the efficiency of the take-over operations on the stability of take-over ability. The results show that compared with the control group, both experimental groups demonstrated a significant improvement in take-over ability, with the behavioral spectrum-based training group exhibiting better take-over performance than the text-based training group. Moreover, after 14 take-over operations, drivers' take-over ability in the behavioral spectrum-based training group stabilized. The findings of this study can contribute to the safety of human–machine codriving vehicles and the design of future driver training systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
回复对方完成签到,获得积分10
1秒前
希望天下0贩的0应助牛犊采纳,获得10
6秒前
李健的粉丝团团长应助季1采纳,获得10
6秒前
19秒前
ding应助二三采纳,获得10
20秒前
20秒前
牛犊发布了新的文献求助10
25秒前
39秒前
爱静静应助科研通管家采纳,获得10
42秒前
爆米花应助科研通管家采纳,获得10
42秒前
爱静静应助科研通管家采纳,获得10
42秒前
爱静静应助科研通管家采纳,获得10
42秒前
二三发布了新的文献求助10
44秒前
45秒前
45秒前
47秒前
zh完成签到,获得积分20
51秒前
糊涂涂发布了新的文献求助10
52秒前
xxbb发布了新的文献求助10
55秒前
1分钟前
鹏程万里完成签到,获得积分10
1分钟前
祥瑞发布了新的文献求助10
1分钟前
贪玩的谷芹完成签到 ,获得积分10
1分钟前
飘逸的平松完成签到 ,获得积分10
1分钟前
1分钟前
慕青应助二三采纳,获得10
1分钟前
linggle发布了新的文献求助10
1分钟前
1分钟前
喝可乐的萝卜兔完成签到 ,获得积分10
1分钟前
Hongbin发布了新的文献求助10
1分钟前
爆米花应助牛犊采纳,获得10
1分钟前
健忘的寻菱完成签到 ,获得积分10
1分钟前
1分钟前
二三发布了新的文献求助10
1分钟前
1分钟前
1分钟前
CipherSage应助maher采纳,获得30
1分钟前
Captain发布了新的文献求助10
1分钟前
1分钟前
jfuU发布了新的文献求助10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126036
求助须知:如何正确求助?哪些是违规求助? 2776256
关于积分的说明 7729636
捐赠科研通 2431643
什么是DOI,文献DOI怎么找? 1292200
科研通“疑难数据库(出版商)”最低求助积分说明 622582
版权声明 600392