Enhancing Blind Video Quality Assessment with Rich Quality-aware Features

质量(理念) 计算机科学 视频质量 业务 营销 公制(单位) 哲学 认识论
作者
Wei Sun,Haoning Wu,Zicheng Zhang,Jun Jia,Zhichao Zhang,Linhan Cao,Qiubo Chen,Xiongkuo Min,Weisi Lin,Guangtao Zhai
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.2405.08745
摘要

In this paper, we present a simple but effective method to enhance blind video quality assessment (BVQA) models for social media videos. Motivated by previous researches that leverage pre-trained features extracted from various computer vision models as the feature representation for BVQA, we further explore rich quality-aware features from pre-trained blind image quality assessment (BIQA) and BVQA models as auxiliary features to help the BVQA model to handle complex distortions and diverse content of social media videos. Specifically, we use SimpleVQA, a BVQA model that consists of a trainable Swin Transformer-B and a fixed SlowFast, as our base model. The Swin Transformer-B and SlowFast components are responsible for extracting spatial and motion features, respectively. Then, we extract three kinds of features from Q-Align, LIQE, and FAST-VQA to capture frame-level quality-aware features, frame-level quality-aware along with scene-specific features, and spatiotemporal quality-aware features, respectively. Through concatenating these features, we employ a multi-layer perceptron (MLP) network to regress them into quality scores. Experimental results demonstrate that the proposed model achieves the best performance on three public social media VQA datasets. Moreover, the proposed model won first place in the CVPR NTIRE 2024 Short-form UGC Video Quality Assessment Challenge. The code is available at \url{https://github.com/sunwei925/RQ-VQA.git}.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2010发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
幸福发布了新的文献求助10
2秒前
Akim应助00采纳,获得10
3秒前
kinger发布了新的文献求助10
4秒前
苏苏诺诺2023完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
lirongcas发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
9秒前
qzj发布了新的文献求助10
10秒前
脑洞疼应助诸松采纳,获得20
11秒前
11秒前
科研通AI5应助Joan7788采纳,获得10
11秒前
赘婿应助谷谷采纳,获得10
11秒前
12秒前
zsh发布了新的文献求助10
12秒前
12秒前
MM完成签到,获得积分10
13秒前
涛ya完成签到,获得积分10
14秒前
15秒前
笛卡尔完成签到,获得积分10
15秒前
xxy完成签到,获得积分10
15秒前
111发布了新的文献求助10
15秒前
传奇3应助幸福采纳,获得10
17秒前
科研通AI5应助伶俐安萱采纳,获得10
18秒前
科研通AI5应助独特的莫言采纳,获得10
18秒前
ljys发布了新的文献求助10
19秒前
kkkk发布了新的文献求助20
19秒前
21秒前
张某人的科研求助完成签到,获得积分20
21秒前
Hongcheng完成签到,获得积分10
22秒前
Orange应助辣辣采纳,获得10
22秒前
22秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488751
求助须知:如何正确求助?哪些是违规求助? 3076283
关于积分的说明 9144615
捐赠科研通 2768593
什么是DOI,文献DOI怎么找? 1519274
邀请新用户注册赠送积分活动 703714
科研通“疑难数据库(出版商)”最低求助积分说明 701952