双层
丁香酚
热重分析
化学
傅里叶变换红外光谱
肉桂醛
壳聚糖
苯甲酸
化学工程
核化学
高分子化学
材料科学
有机化学
膜
生物化学
工程类
催化作用
作者
Shuai Wang,Ren Zhaohui,Helin Li,Ye Xue,Mingyue Zhang,Rui Li,Pengfei Liu
标识
DOI:10.1016/j.ijbiomac.2024.132663
摘要
This study investigated the release of aromatic compounds with distinct functional groups within bilayer microcapsules. Bilayer microcapsules of four distinctive core materials (benzyl alcohol, eugenol, cinnamaldehyde, and benzoic acid) were synthesized via freeze-drying. Chitosan (CS) and sodium alginate (ALG) were used as wall materials. CS concentration, using orthogonal experiments with the loading ratio as a metric. Under optimal conditions, three other types of microcapsules (cinnamic aldehyde, benzoic acid, and benzyl alcohol) were obtained. The four types of microcapsules were characterized using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscope (TEM), and thermogravimetric analysis (TGA), and their sustained release characteristics were evaluated. The optimal conditions were: CS dosage, 1.2 %; CS-to-eugenol mass ratio, 1:2; and CS-to-ALG mass ratio, 1:1. By comparing the IR spectra of the four types of microcapsules, wall material, and core material, the core materials were revealed to be encapsulated within the wall material. SEM results revealed that the granular protuberances on the surface of the microcapsules were closely aligned and persistent when magnified 2000×. The TEM results indicated that all four microcapsules had a spherical and bilayer structure. The thermal stability and sustained release results showed that the four microcapsules were more resilient and less volatile than the four core materials. The release conformed to first-order kinetics, and the release ratios of the four microcapsules were as follows: benzyl alcohol microcapsules ˃ eugenol microcapsules ˃ cinnamaldehyde microcapsules ˃ benzoic acid microcapsules. The prepared bilayer microcapsules encapsulated four different core materials with good sustained release properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI