Mahalanobis-Kernel Distance-Based Suppressed Possibilistic C-Means Clustering Algorithm for Imbalanced Image Segmentation

模式识别(心理学) 聚类分析 马氏距离 人工智能 模糊聚类 核(代数) 维数之咒 图像分割 数学 计算机科学 离群值 火焰团簇 相关聚类 CURE数据聚类算法 数据挖掘 分割 组合数学
作者
Haiyan Yu,Shuang Xie,Jiulun Fan,Rong Lan,Bo Lei
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (8): 4595-4609 被引量:4
标识
DOI:10.1109/tfuzz.2024.3405497
摘要

The Possibilistic c-means clustering (PCM) is an important unsupervised pattern recognition method. However, it is still faced with huge challenges in clustering multidimensional data with multiple characteristics, such as imbalanced sample sizes, imbalanced feature components, noise and outlier corruption, and the sparse distribution of small targets in the feature space caused by the "curse of dimensionality". In view of this, this paper proposes a possibilistic c-means clustering algorithm based on the Mahalanobis-Kernel Distance and the suppressed competitive learning strategy. To begin with, the Mahalanobis-Kernel Distance combined with the absolute attribute of possibilistic memberships is proposed to enhance the intra-class compactness of small targets with sparse distribution and feature imbalance. In addition, to overcome the inherent coincident clustering problem caused by possibilistic memberships, the "suppressed competitive learning" mechanism based on the Mahalanobis-Kernel distance is designed to generate cluster cores and correct memberships of objects located within the cluster cores, thus guiding purposefully the clustering process. Furthermore, spatial information is introduced by the membership filtering scheme to improve the segmentation effect of color images with small targets and noise injection. Experimental results show that the algorithm in this paper can achieve better clustering and segmentation performance than several state-of-the-art fuzzy clustering methods for color images with imbalanced sizes and features, and noise injection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HEIKU应助谦让傲菡采纳,获得10
刚刚
舒涵关注了科研通微信公众号
刚刚
灰鹅发布了新的文献求助10
1秒前
可颂完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
国服懒羊羊完成签到,获得积分10
3秒前
领导范儿应助ZTT采纳,获得10
3秒前
moon发布了新的文献求助10
4秒前
小宇发布了新的文献求助10
4秒前
4秒前
Neon0524完成签到 ,获得积分10
4秒前
HEIKU应助颜绫采纳,获得50
5秒前
5秒前
Jiayou Zhang完成签到,获得积分10
5秒前
高高迎蓉发布了新的文献求助10
5秒前
徐霜完成签到 ,获得积分10
6秒前
DDXXC完成签到,获得积分10
6秒前
忧郁的续完成签到,获得积分20
6秒前
陈强发布了新的文献求助30
6秒前
wzg666完成签到,获得积分10
7秒前
7秒前
爆米花应助找不到采纳,获得10
7秒前
任性的梦菲应助圈圈采纳,获得30
7秒前
8秒前
Ava应助踏实的烙采纳,获得10
8秒前
9秒前
ChangSZ应助speedness采纳,获得10
9秒前
自由基不能聚合完成签到,获得积分10
9秒前
shone发布了新的文献求助10
10秒前
烟花应助yug采纳,获得10
10秒前
科研cc发布了新的文献求助10
10秒前
你仔细听发布了新的文献求助10
10秒前
路之遥兮发布了新的文献求助10
11秒前
一平发布了新的文献求助10
11秒前
jerry完成签到,获得积分20
11秒前
搞怪便当完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672