Reliable monitoring and prediction method for transmission lines based on FBG and LSTM

计算机科学 传输(电信) 电力传输 人工智能 工程类 电信 电气工程
作者
Rui Zhou,Zhiguo Zhang,Haojie Zhang,Shanyong Cai,Wei Zhang,Aobo Fan,Ziyang Xiao,Luming Li
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:62: 102603-102603 被引量:7
标识
DOI:10.1016/j.aei.2024.102603
摘要

Transmission lines are susceptible to extreme weather conditions, and severe icing disasters can lead to incidents such as line breakage and collapse. Traditional monitoring and prediction methods for managing ice disasters suffer from poor reliability and short prediction lead times, hindering effective disaster prevention and mitigation efforts. This study introduces a prediction system enhancing icing forecast accuracy and timing. Initially, a dependable architecture was developed for gathering microclimate data on transmission lines using fiber Bragg grating technology. Subsequently, an optimized icing prediction process was established. The Bayesian optimization algorithm was utilized to optimize the entire predictive process, from input through the internal structure of the model to the final output, enhancing the accuracy and reliability. The prediction outcomes of various models, including recurrent neural networks, long short-term memory, gated recurrent units, and artificial neural networks, were then compared across different time series settings. The optimal prediction model was validated across three icing cycles collected in different provinces, achieving icing forecasts 6 hours in advance. With an R-squared value exceeding 0.97 and a mean absolute percentage error below 1.5%, the model demonstrated versatility under various conditions. This method, by outperforming current prediction techniques, significantly enhances forecasting precision and duration, effectively elevating the level of ice disaster prevention and control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zizi完成签到,获得积分10
1秒前
zzcc完成签到,获得积分10
1秒前
小马甲应助孤独箴言采纳,获得10
1秒前
七月完成签到,获得积分20
3秒前
5秒前
椰椰完成签到 ,获得积分10
5秒前
hh完成签到 ,获得积分10
6秒前
柯一一应助Gaojuan采纳,获得10
6秒前
七月发布了新的文献求助20
7秒前
7秒前
红雪0801完成签到,获得积分10
8秒前
我是老大应助念姬采纳,获得10
9秒前
Billy应助rune采纳,获得10
10秒前
顺顺顺顺发布了新的文献求助10
12秒前
万能图书馆应助Decline采纳,获得10
13秒前
14秒前
15秒前
binz完成签到,获得积分10
16秒前
田超完成签到,获得积分10
17秒前
18秒前
今后应助瞿寒采纳,获得10
21秒前
coconut发布了新的文献求助10
21秒前
21秒前
猪猪hero应助limeOrca采纳,获得10
23秒前
红雪0801发布了新的文献求助10
24秒前
归尘发布了新的文献求助20
25秒前
胡杨树2006完成签到,获得积分10
26秒前
谦让以筠发布了新的文献求助10
26秒前
zhangpp发布了新的文献求助10
29秒前
纪震宇发布了新的文献求助10
30秒前
31秒前
王崇霖发布了新的文献求助10
35秒前
36秒前
NexusExplorer应助Marciu33采纳,获得20
39秒前
CodeCraft应助周游采纳,获得10
39秒前
瞿寒发布了新的文献求助10
41秒前
41秒前
天天快乐应助xiaoxiao采纳,获得10
41秒前
zhangpp完成签到,获得积分10
41秒前
41秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962932
求助须知:如何正确求助?哪些是违规求助? 3508908
关于积分的说明 11143865
捐赠科研通 3241789
什么是DOI,文献DOI怎么找? 1791700
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803579