亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reliable monitoring and prediction method for transmission lines based on FBG and LSTM

计算机科学 传输(电信) 电力传输 人工智能 工程类 电信 电气工程
作者
Rui Zhou,Zhiguo Zhang,Haojie Zhang,Shanyong Cai,Wei Zhang,Aobo Fan,Ziyang Xiao,Luming Li
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:62: 102603-102603 被引量:7
标识
DOI:10.1016/j.aei.2024.102603
摘要

Transmission lines are susceptible to extreme weather conditions, and severe icing disasters can lead to incidents such as line breakage and collapse. Traditional monitoring and prediction methods for managing ice disasters suffer from poor reliability and short prediction lead times, hindering effective disaster prevention and mitigation efforts. This study introduces a prediction system enhancing icing forecast accuracy and timing. Initially, a dependable architecture was developed for gathering microclimate data on transmission lines using fiber Bragg grating technology. Subsequently, an optimized icing prediction process was established. The Bayesian optimization algorithm was utilized to optimize the entire predictive process, from input through the internal structure of the model to the final output, enhancing the accuracy and reliability. The prediction outcomes of various models, including recurrent neural networks, long short-term memory, gated recurrent units, and artificial neural networks, were then compared across different time series settings. The optimal prediction model was validated across three icing cycles collected in different provinces, achieving icing forecasts 6 hours in advance. With an R-squared value exceeding 0.97 and a mean absolute percentage error below 1.5%, the model demonstrated versatility under various conditions. This method, by outperforming current prediction techniques, significantly enhances forecasting precision and duration, effectively elevating the level of ice disaster prevention and control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助活力冬云采纳,获得10
4秒前
8秒前
scup完成签到,获得积分10
13秒前
眼睛大羽毛完成签到 ,获得积分10
19秒前
20秒前
38秒前
scup发布了新的文献求助10
43秒前
活力冬云发布了新的文献求助10
44秒前
神勇马里奥完成签到 ,获得积分10
49秒前
科研通AI2S应助活力冬云采纳,获得10
51秒前
52秒前
54秒前
57秒前
斿斿完成签到 ,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
SCI的李完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
大龙完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
ganson完成签到 ,获得积分10
1分钟前
2分钟前
充电宝应助完美棉花糖采纳,获得10
2分钟前
天天快乐应助111采纳,获得10
2分钟前
科研通AI6应助freshfire采纳,获得30
2分钟前
完美棉花糖完成签到 ,获得积分10
2分钟前
FashionBoy应助激动的鹰采纳,获得10
3分钟前
梨花诗完成签到,获得积分10
3分钟前
梨花诗发布了新的文献求助30
3分钟前
3分钟前
完美世界应助HaCat采纳,获得10
3分钟前
ceeray23发布了新的文献求助30
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463273
求助须知:如何正确求助?哪些是违规求助? 4568033
关于积分的说明 14312341
捐赠科研通 4493928
什么是DOI,文献DOI怎么找? 2461987
邀请新用户注册赠送积分活动 1450972
关于科研通互助平台的介绍 1426184