Reliable monitoring and prediction method for transmission lines based on FBG and LSTM

计算机科学 传输(电信) 电力传输 人工智能 工程类 电信 电气工程
作者
Rui Zhou,Zhiguo Zhang,Haojie Zhang,Shanyong Cai,Wei Zhang,Aobo Fan,Ziyang Xiao,Luming Li
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:62: 102603-102603 被引量:2
标识
DOI:10.1016/j.aei.2024.102603
摘要

Transmission lines are susceptible to extreme weather conditions, and severe icing disasters can lead to incidents such as line breakage and collapse. Traditional monitoring and prediction methods for managing ice disasters suffer from poor reliability and short prediction lead times, hindering effective disaster prevention and mitigation efforts. This study introduces a prediction system enhancing icing forecast accuracy and timing. Initially, a dependable architecture was developed for gathering microclimate data on transmission lines using fiber Bragg grating technology. Subsequently, an optimized icing prediction process was established. The Bayesian optimization algorithm was utilized to optimize the entire predictive process, from input through the internal structure of the model to the final output, enhancing the accuracy and reliability. The prediction outcomes of various models, including recurrent neural networks, long short-term memory, gated recurrent units, and artificial neural networks, were then compared across different time series settings. The optimal prediction model was validated across three icing cycles collected in different provinces, achieving icing forecasts 6 hours in advance. With an R-squared value exceeding 0.97 and a mean absolute percentage error below 1.5%, the model demonstrated versatility under various conditions. This method, by outperforming current prediction techniques, significantly enhances forecasting precision and duration, effectively elevating the level of ice disaster prevention and control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊酒发布了新的文献求助10
刚刚
蓉儿完成签到 ,获得积分10
1秒前
动人的梦之完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
3秒前
小小爱吃百香果完成签到,获得积分20
4秒前
薪炭林应助空心采纳,获得30
4秒前
宫宛儿完成签到,获得积分10
4秒前
smile发布了新的文献求助10
5秒前
永远少年发布了新的文献求助10
6秒前
跳跃完成签到,获得积分20
6秒前
6秒前
7秒前
7秒前
7秒前
sansan发布了新的文献求助10
7秒前
tassssadar完成签到,获得积分10
8秒前
8秒前
通辽小判官完成签到,获得积分10
9秒前
曲蔚然发布了新的文献求助30
10秒前
liuxl完成签到,获得积分10
10秒前
长隆完成签到 ,获得积分10
12秒前
12秒前
852应助YukiXu采纳,获得10
13秒前
13秒前
jijizz发布了新的文献求助10
13秒前
yyyyy发布了新的文献求助10
13秒前
zhappy发布了新的文献求助20
13秒前
14秒前
稳重的八宝粥完成签到 ,获得积分10
15秒前
15秒前
xx关闭了xx文献求助
15秒前
16秒前
18秒前
19秒前
su发布了新的文献求助10
19秒前
小马甲应助鳗鱼灵寒采纳,获得10
19秒前
calbee发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808