亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reliable monitoring and prediction method for transmission lines based on FBG and LSTM

计算机科学 传输(电信) 电力传输 人工智能 工程类 电信 电气工程
作者
Rui Zhou,Zhiguo Zhang,Haojie Zhang,Shanyong Cai,Wei Zhang,Aobo Fan,Ziyang Xiao,Luming Li
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:62: 102603-102603 被引量:7
标识
DOI:10.1016/j.aei.2024.102603
摘要

Transmission lines are susceptible to extreme weather conditions, and severe icing disasters can lead to incidents such as line breakage and collapse. Traditional monitoring and prediction methods for managing ice disasters suffer from poor reliability and short prediction lead times, hindering effective disaster prevention and mitigation efforts. This study introduces a prediction system enhancing icing forecast accuracy and timing. Initially, a dependable architecture was developed for gathering microclimate data on transmission lines using fiber Bragg grating technology. Subsequently, an optimized icing prediction process was established. The Bayesian optimization algorithm was utilized to optimize the entire predictive process, from input through the internal structure of the model to the final output, enhancing the accuracy and reliability. The prediction outcomes of various models, including recurrent neural networks, long short-term memory, gated recurrent units, and artificial neural networks, were then compared across different time series settings. The optimal prediction model was validated across three icing cycles collected in different provinces, achieving icing forecasts 6 hours in advance. With an R-squared value exceeding 0.97 and a mean absolute percentage error below 1.5%, the model demonstrated versatility under various conditions. This method, by outperforming current prediction techniques, significantly enhances forecasting precision and duration, effectively elevating the level of ice disaster prevention and control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪的熠彤完成签到,获得积分10
1秒前
swimming完成签到 ,获得积分10
1秒前
2秒前
yezio完成签到,获得积分10
2秒前
Hey完成签到,获得积分10
3秒前
刻苦的念柏应助Lisa采纳,获得10
4秒前
ycwang完成签到,获得积分10
4秒前
双青豆完成签到 ,获得积分10
4秒前
脑洞疼应助闪闪的熠彤采纳,获得10
5秒前
Wenshu发布了新的文献求助10
7秒前
7秒前
此去经年完成签到 ,获得积分10
7秒前
7秒前
我吃小饼干完成签到 ,获得积分10
9秒前
顺利八宝粥完成签到,获得积分10
10秒前
10秒前
当当完成签到 ,获得积分10
13秒前
13秒前
lilian完成签到,获得积分10
13秒前
桐桐应助赵娜采纳,获得10
14秒前
霸气又萌完成签到,获得积分10
17秒前
28秒前
隐形的若灵完成签到,获得积分10
28秒前
两袖清风完成签到 ,获得积分10
28秒前
GingerF给LSH970829的求助进行了留言
30秒前
修辛发布了新的文献求助10
31秒前
34秒前
无极微光应助顺利八宝粥采纳,获得20
34秒前
Tanyang完成签到 ,获得积分10
36秒前
丹丹子完成签到 ,获得积分10
37秒前
科研通AI2S应助万事屋采纳,获得10
38秒前
40秒前
41秒前
123123完成签到 ,获得积分10
45秒前
zhenjie发布了新的文献求助30
45秒前
47秒前
鳗鱼盼夏发布了新的文献求助10
47秒前
50秒前
浮游应助科研通管家采纳,获得10
51秒前
浮游应助科研通管家采纳,获得10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426257
求助须知:如何正确求助?哪些是违规求助? 4540076
关于积分的说明 14171541
捐赠科研通 4457844
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164