Multimodal data fusion for geo-hazard prediction in underground mining operation

传感器融合 危害 数据挖掘 计算机科学 工程类 人工智能 有机化学 化学
作者
Ruiyu Liang,Chengguo Zhang,Chaoran Huang,Binghao Li,Serkan Saydam,Ismet Canbulat,Lesley Munsamy
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:193: 110268-110268 被引量:8
标识
DOI:10.1016/j.cie.2024.110268
摘要

Geohazard prediction is one of the most important and challenging tasks in underground mining. It still remains difficult to improve the prediction accuracy and make it compatible with the ever-increasing data in mining, especially when the data are sparsely allocated in a large-scale mining environment. This study introduces an innovative multimodal data fusion approach for geohazard prediction in underground mining to address this challenge. By incorporating visual model data as a novel modality and using interpolated rock mass rating data as a cross-complementary factor, the framework enhances the effectiveness of data fusion. Specific machine learning models were used and validated (e.g., neural networks, SVM, KNN, etc.) for proposed multimodal data fusion, addressing challenges posed by sparsely scattered multidimensional data, which generally have weak spatial connections across diverse datasets. In detail, to enhance spatial connection among diverse datasets, this paper leverage digitalised and gridded CAD file-based visual model data as a foundational carrier, the new modality, to facilitate the establishment of robust internal connections with routine data. Additionally, rock mass rating data is interpolated and aligned with visual model data to enhance spatial connections, improving spatial information-orientated data fusion. Then, to validate the accuracy and efficiency of the novel multimodal data fusion framework, we process and integrate two different routine data from a case study mine. Performance is tested by nine different data combinations, originating from two routine datasets, visual model data, and rock mass rating data. Finally, through comprehensive cross-validation, the proposed multimodal data fusion framework significantly improves the stability of prediction models at a comprehensive mine site scale, with high accuracy and low False-Negative rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助Docsiwen采纳,获得10
刚刚
刚刚
也无风雨也无晴完成签到,获得积分10
刚刚
一个人的表情完成签到,获得积分10
刚刚
zhang完成签到,获得积分10
刚刚
欢呼的念瑶完成签到,获得积分10
刚刚
刚刚
SSY完成签到,获得积分10
1秒前
north应助God采纳,获得10
1秒前
1秒前
Emma完成签到,获得积分10
1秒前
上官若男应助小黄油采纳,获得10
2秒前
小吃货完成签到,获得积分10
3秒前
斯文问旋完成签到,获得积分10
3秒前
万能图书馆应助fjaa采纳,获得10
3秒前
晓军发布了新的文献求助10
4秒前
4秒前
小蓝完成签到,获得积分10
4秒前
爱听歌的机器猫完成签到 ,获得积分10
4秒前
kingwill应助wyblobin采纳,获得20
4秒前
4秒前
Jincen完成签到,获得积分10
4秒前
liangliang完成签到,获得积分10
4秒前
FYm完成签到,获得积分10
4秒前
7ohnny完成签到,获得积分10
4秒前
rebeccahu发布了新的文献求助10
5秒前
5秒前
正己化人应助虚心的静枫采纳,获得10
6秒前
晓生完成签到,获得积分10
7秒前
7秒前
CodeCraft应助HalaMadrid采纳,获得10
7秒前
帅帅厅完成签到,获得积分10
8秒前
开心完成签到 ,获得积分10
8秒前
zd发布了新的文献求助10
8秒前
8秒前
18726352502完成签到,获得积分20
8秒前
无花果应助wxf采纳,获得10
9秒前
9秒前
拾柒完成签到,获得积分10
9秒前
Zx_1993应助晓军采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977