Multimodal data fusion for geo-hazard prediction in underground mining operation

传感器融合 危害 数据挖掘 计算机科学 工程类 人工智能 有机化学 化学
作者
Ruiyu Liang,Chengguo Zhang,Chaoran Huang,Binghao Li,Serkan Saydam,Ismet Canbulat,Lesley Munsamy
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:193: 110268-110268 被引量:4
标识
DOI:10.1016/j.cie.2024.110268
摘要

Geohazard prediction is one of the most important and challenging tasks in underground mining. It still remains difficult to improve the prediction accuracy and make it compatible with the ever-increasing data in mining, especially when the data are sparsely allocated in a large-scale mining environment. This study introduces an innovative multimodal data fusion approach for geohazard prediction in underground mining to address this challenge. By incorporating visual model data as a novel modality and using interpolated rock mass rating data as a cross-complementary factor, the framework enhances the effectiveness of data fusion. Specific machine learning models were used and validated (e.g., neural networks, SVM, KNN, etc.) for proposed multimodal data fusion, addressing challenges posed by sparsely scattered multidimensional data, which generally have weak spatial connections across diverse datasets. In detail, to enhance spatial connection among diverse datasets, this paper leverage digitalised and gridded CAD file-based visual model data as a foundational carrier, the new modality, to facilitate the establishment of robust internal connections with routine data. Additionally, rock mass rating data is interpolated and aligned with visual model data to enhance spatial connections, improving spatial information-orientated data fusion. Then, to validate the accuracy and efficiency of the novel multimodal data fusion framework, we process and integrate two different routine data from a case study mine. Performance is tested by nine different data combinations, originating from two routine datasets, visual model data, and rock mass rating data. Finally, through comprehensive cross-validation, the proposed multimodal data fusion framework significantly improves the stability of prediction models at a comprehensive mine site scale, with high accuracy and low False-Negative rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
大青山发布了新的文献求助10
1秒前
活泼的行天关注了科研通微信公众号
2秒前
3秒前
5秒前
5秒前
5秒前
5秒前
画月完成签到 ,获得积分10
6秒前
7秒前
7秒前
黑石发布了新的文献求助10
7秒前
小不点完成签到,获得积分10
7秒前
呵呵完成签到 ,获得积分10
7秒前
Akim应助潇湘雪月采纳,获得10
8秒前
赘婿应助fengliurencai采纳,获得10
9秒前
宋凤娇发布了新的文献求助10
9秒前
青山发布了新的文献求助100
9秒前
菜菜博士发布了新的文献求助10
9秒前
刘佳冉发布了新的文献求助10
10秒前
ASZXDW完成签到,获得积分10
10秒前
讨厌科研发布了新的文献求助10
10秒前
星空发布了新的文献求助30
11秒前
风趣的爆米花完成签到,获得积分10
11秒前
LTT完成签到,获得积分10
12秒前
12秒前
酷波er应助平淡夜柳采纳,获得10
12秒前
12秒前
阳光怀亦发布了新的文献求助50
14秒前
杜杜发布了新的文献求助10
17秒前
18秒前
123发布了新的文献求助10
19秒前
搜集达人应助活泼的行天采纳,获得10
20秒前
chen完成签到 ,获得积分10
20秒前
20秒前
linp发布了新的文献求助10
21秒前
LLL完成签到,获得积分10
22秒前
KDC完成签到,获得积分10
22秒前
阳光怀亦完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174