Multimodal data fusion for geo-hazard prediction in underground mining operation

传感器融合 危害 数据挖掘 计算机科学 工程类 人工智能 有机化学 化学
作者
Ruiyu Liang,Chengguo Zhang,Chaoran Huang,Binghao Li,Serkan Saydam,Ismet Canbulat,Lesley Munsamy
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:193: 110268-110268 被引量:8
标识
DOI:10.1016/j.cie.2024.110268
摘要

Geohazard prediction is one of the most important and challenging tasks in underground mining. It still remains difficult to improve the prediction accuracy and make it compatible with the ever-increasing data in mining, especially when the data are sparsely allocated in a large-scale mining environment. This study introduces an innovative multimodal data fusion approach for geohazard prediction in underground mining to address this challenge. By incorporating visual model data as a novel modality and using interpolated rock mass rating data as a cross-complementary factor, the framework enhances the effectiveness of data fusion. Specific machine learning models were used and validated (e.g., neural networks, SVM, KNN, etc.) for proposed multimodal data fusion, addressing challenges posed by sparsely scattered multidimensional data, which generally have weak spatial connections across diverse datasets. In detail, to enhance spatial connection among diverse datasets, this paper leverage digitalised and gridded CAD file-based visual model data as a foundational carrier, the new modality, to facilitate the establishment of robust internal connections with routine data. Additionally, rock mass rating data is interpolated and aligned with visual model data to enhance spatial connections, improving spatial information-orientated data fusion. Then, to validate the accuracy and efficiency of the novel multimodal data fusion framework, we process and integrate two different routine data from a case study mine. Performance is tested by nine different data combinations, originating from two routine datasets, visual model data, and rock mass rating data. Finally, through comprehensive cross-validation, the proposed multimodal data fusion framework significantly improves the stability of prediction models at a comprehensive mine site scale, with high accuracy and low False-Negative rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助杨淇升采纳,获得10
1秒前
Eynaaa发布了新的文献求助10
2秒前
可乐发布了新的文献求助10
3秒前
科研通AI5应助liang2508采纳,获得10
5秒前
科研通AI5应助liang2508采纳,获得10
5秒前
科研通AI5应助liang2508采纳,获得10
5秒前
李健应助liang2508采纳,获得10
5秒前
科研通AI5应助liang2508采纳,获得10
5秒前
科研通AI5应助liang2508采纳,获得10
5秒前
科研通AI5应助liang2508采纳,获得10
5秒前
科研通AI5应助liang2508采纳,获得10
5秒前
科研通AI5应助liang2508采纳,获得10
5秒前
科研通AI5应助liang2508采纳,获得10
5秒前
6秒前
6秒前
7秒前
铮铮铁骨发布了新的文献求助10
8秒前
我是老大应助温柔书双采纳,获得10
8秒前
11秒前
顾矜应助可乐采纳,获得10
11秒前
chlc6973完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
sunny完成签到,获得积分10
14秒前
mini昕发布了新的文献求助10
18秒前
Aegean发布了新的文献求助10
18秒前
banana发布了新的文献求助10
19秒前
Silvia发布了新的文献求助10
19秒前
19秒前
xiong xiong发布了新的文献求助30
20秒前
快乐的薯片完成签到,获得积分10
23秒前
脑洞疼应助TvTiing采纳,获得10
24秒前
26秒前
creepppp发布了新的文献求助10
26秒前
27秒前
含蓄的白安完成签到,获得积分10
27秒前
小徐同志完成签到,获得积分10
28秒前
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924906
求助须知:如何正确求助?哪些是违规求助? 4195065
关于积分的说明 13030178
捐赠科研通 3966775
什么是DOI,文献DOI怎么找? 2174275
邀请新用户注册赠送积分活动 1191665
关于科研通互助平台的介绍 1101154