亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multimodal data fusion for geo-hazard prediction in underground mining operation

传感器融合 危害 数据挖掘 计算机科学 工程类 人工智能 有机化学 化学
作者
Ruiyu Liang,Chengguo Zhang,Chaoran Huang,Binghao Li,Serkan Saydam,Ismet Canbulat,Lesley Munsamy
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:193: 110268-110268 被引量:8
标识
DOI:10.1016/j.cie.2024.110268
摘要

Geohazard prediction is one of the most important and challenging tasks in underground mining. It still remains difficult to improve the prediction accuracy and make it compatible with the ever-increasing data in mining, especially when the data are sparsely allocated in a large-scale mining environment. This study introduces an innovative multimodal data fusion approach for geohazard prediction in underground mining to address this challenge. By incorporating visual model data as a novel modality and using interpolated rock mass rating data as a cross-complementary factor, the framework enhances the effectiveness of data fusion. Specific machine learning models were used and validated (e.g., neural networks, SVM, KNN, etc.) for proposed multimodal data fusion, addressing challenges posed by sparsely scattered multidimensional data, which generally have weak spatial connections across diverse datasets. In detail, to enhance spatial connection among diverse datasets, this paper leverage digitalised and gridded CAD file-based visual model data as a foundational carrier, the new modality, to facilitate the establishment of robust internal connections with routine data. Additionally, rock mass rating data is interpolated and aligned with visual model data to enhance spatial connections, improving spatial information-orientated data fusion. Then, to validate the accuracy and efficiency of the novel multimodal data fusion framework, we process and integrate two different routine data from a case study mine. Performance is tested by nine different data combinations, originating from two routine datasets, visual model data, and rock mass rating data. Finally, through comprehensive cross-validation, the proposed multimodal data fusion framework significantly improves the stability of prediction models at a comprehensive mine site scale, with high accuracy and low False-Negative rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
药学卷王完成签到,获得积分20
19秒前
29秒前
清脆元冬发布了新的文献求助10
32秒前
34秒前
李玄发布了新的文献求助10
1分钟前
1分钟前
yhe314992205发布了新的文献求助30
1分钟前
Hello应助李玄采纳,获得10
1分钟前
1分钟前
药学卷王发布了新的文献求助10
1分钟前
weibo完成签到,获得积分10
1分钟前
yhe314992205完成签到,获得积分10
1分钟前
1分钟前
yb完成签到,获得积分10
2分钟前
桦奕兮完成签到 ,获得积分10
2分钟前
万能图书馆应助mmj采纳,获得10
2分钟前
楠楠完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
GTT0720完成签到 ,获得积分10
3分钟前
3分钟前
l1563358发布了新的文献求助10
3分钟前
清脆元冬发布了新的文献求助10
4分钟前
CipherSage应助清脆元冬采纳,获得10
4分钟前
gszy1975完成签到,获得积分10
4分钟前
彩虹儿应助科研通管家采纳,获得10
5分钟前
chen发布了新的文献求助30
5分钟前
科研通AI5应助研友_ana采纳,获得10
5分钟前
钟钟完成签到,获得积分10
5分钟前
lixuebin完成签到 ,获得积分10
6分钟前
chen完成签到,获得积分10
6分钟前
6分钟前
研友_ana发布了新的文献求助10
6分钟前
6分钟前
彩虹儿应助科研通管家采纳,获得10
7分钟前
7分钟前
8分钟前
芜湖发布了新的文献求助10
8分钟前
欢呼若南发布了新的文献求助10
8分钟前
芜湖完成签到,获得积分10
8分钟前
田様应助111采纳,获得10
8分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137649
求助须知:如何正确求助?哪些是违规求助? 4337345
关于积分的说明 13511452
捐赠科研通 4176034
什么是DOI,文献DOI怎么找? 2289822
邀请新用户注册赠送积分活动 1290349
关于科研通互助平台的介绍 1232134