Multimodal data fusion for geo-hazard prediction in underground mining operation

传感器融合 危害 数据挖掘 计算机科学 工程类 人工智能 有机化学 化学
作者
Ruiyu Liang,Chengguo Zhang,Chaoran Huang,Binghao Li,Serkan Saydam,Ismet Canbulat,Lesley Munsamy
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:193: 110268-110268 被引量:4
标识
DOI:10.1016/j.cie.2024.110268
摘要

Geohazard prediction is one of the most important and challenging tasks in underground mining. It still remains difficult to improve the prediction accuracy and make it compatible with the ever-increasing data in mining, especially when the data are sparsely allocated in a large-scale mining environment. This study introduces an innovative multimodal data fusion approach for geohazard prediction in underground mining to address this challenge. By incorporating visual model data as a novel modality and using interpolated rock mass rating data as a cross-complementary factor, the framework enhances the effectiveness of data fusion. Specific machine learning models were used and validated (e.g., neural networks, SVM, KNN, etc.) for proposed multimodal data fusion, addressing challenges posed by sparsely scattered multidimensional data, which generally have weak spatial connections across diverse datasets. In detail, to enhance spatial connection among diverse datasets, this paper leverage digitalised and gridded CAD file-based visual model data as a foundational carrier, the new modality, to facilitate the establishment of robust internal connections with routine data. Additionally, rock mass rating data is interpolated and aligned with visual model data to enhance spatial connections, improving spatial information-orientated data fusion. Then, to validate the accuracy and efficiency of the novel multimodal data fusion framework, we process and integrate two different routine data from a case study mine. Performance is tested by nine different data combinations, originating from two routine datasets, visual model data, and rock mass rating data. Finally, through comprehensive cross-validation, the proposed multimodal data fusion framework significantly improves the stability of prediction models at a comprehensive mine site scale, with high accuracy and low False-Negative rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑半雪完成签到,获得积分10
刚刚
CipherSage应助知犯何逆采纳,获得10
1秒前
淡淡月饼完成签到,获得积分10
5秒前
5秒前
超帅无色完成签到,获得积分20
6秒前
snow完成签到 ,获得积分10
7秒前
10秒前
dream完成签到 ,获得积分10
12秒前
唐唐发布了新的文献求助10
12秒前
史克珍香完成签到 ,获得积分10
18秒前
晓风完成签到,获得积分10
21秒前
CR完成签到 ,获得积分10
22秒前
mammer应助超帅无色采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
所所应助科研通管家采纳,获得10
24秒前
Owen应助科研通管家采纳,获得10
24秒前
24秒前
lilylwy完成签到 ,获得积分0
24秒前
li完成签到 ,获得积分10
24秒前
可爱的函函应助唐唐采纳,获得10
29秒前
小石头完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
35秒前
xiaoxiaoxingchen完成签到 ,获得积分10
35秒前
laohu完成签到,获得积分10
36秒前
风格完成签到,获得积分10
36秒前
大橙子发布了新的文献求助150
38秒前
八点必起完成签到,获得积分10
39秒前
sduweiyu完成签到 ,获得积分10
40秒前
hyf完成签到 ,获得积分10
41秒前
aldehyde应助芊芊要发SCI采纳,获得10
42秒前
Twinkle完成签到,获得积分10
44秒前
Eureka完成签到,获得积分10
46秒前
50秒前
浮熙完成签到 ,获得积分10
57秒前
笔芯完成签到,获得积分10
1分钟前
看文献完成签到,获得积分0
1分钟前
爱与感谢完成签到 ,获得积分10
1分钟前
华仔应助大橙子采纳,获得10
1分钟前
小帅完成签到,获得积分10
1分钟前
man完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022