Multimodal data fusion for geo-hazard prediction in underground mining operation

传感器融合 危害 数据挖掘 计算机科学 工程类 人工智能 有机化学 化学
作者
Ruiyu Liang,Chengguo Zhang,Chaoran Huang,Binghao Li,Serkan Saydam,Ismet Canbulat,Lesley Munsamy
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:193: 110268-110268 被引量:4
标识
DOI:10.1016/j.cie.2024.110268
摘要

Geohazard prediction is one of the most important and challenging tasks in underground mining. It still remains difficult to improve the prediction accuracy and make it compatible with the ever-increasing data in mining, especially when the data are sparsely allocated in a large-scale mining environment. This study introduces an innovative multimodal data fusion approach for geohazard prediction in underground mining to address this challenge. By incorporating visual model data as a novel modality and using interpolated rock mass rating data as a cross-complementary factor, the framework enhances the effectiveness of data fusion. Specific machine learning models were used and validated (e.g., neural networks, SVM, KNN, etc.) for proposed multimodal data fusion, addressing challenges posed by sparsely scattered multidimensional data, which generally have weak spatial connections across diverse datasets. In detail, to enhance spatial connection among diverse datasets, this paper leverage digitalised and gridded CAD file-based visual model data as a foundational carrier, the new modality, to facilitate the establishment of robust internal connections with routine data. Additionally, rock mass rating data is interpolated and aligned with visual model data to enhance spatial connections, improving spatial information-orientated data fusion. Then, to validate the accuracy and efficiency of the novel multimodal data fusion framework, we process and integrate two different routine data from a case study mine. Performance is tested by nine different data combinations, originating from two routine datasets, visual model data, and rock mass rating data. Finally, through comprehensive cross-validation, the proposed multimodal data fusion framework significantly improves the stability of prediction models at a comprehensive mine site scale, with high accuracy and low False-Negative rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海阔凭宇跃完成签到,获得积分10
1秒前
123456完成签到,获得积分20
1秒前
1秒前
2秒前
whooer发布了新的文献求助10
2秒前
化学胖子完成签到,获得积分10
3秒前
充电宝应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
5秒前
just flow发布了新的文献求助10
5秒前
594发布了新的文献求助10
6秒前
rabbt~发布了新的文献求助10
7秒前
冷艳哈密瓜完成签到 ,获得积分10
7秒前
7秒前
昴星引路完成签到 ,获得积分10
8秒前
CGBY发布了新的文献求助10
9秒前
手帕很忙完成签到,获得积分10
10秒前
77发布了新的文献求助10
10秒前
StevenW完成签到,获得积分10
11秒前
orixero应助whooer采纳,获得10
12秒前
路宝发布了新的文献求助10
12秒前
haishixigua完成签到,获得积分10
12秒前
大宝君应助爱听歌的乐天采纳,获得20
13秒前
朱晖发布了新的文献求助10
13秒前
yangshujuan发布了新的文献求助10
13秒前
13秒前
科研通AI2S应助李海平采纳,获得10
14秒前
sian关注了科研通微信公众号
14秒前
小金完成签到,获得积分10
14秒前
zzz完成签到 ,获得积分10
14秒前
just flow完成签到,获得积分10
15秒前
852应助农大彭于晏采纳,获得10
16秒前
如晴发布了新的文献求助10
17秒前
ZnCu应助just flow采纳,获得10
19秒前
自信飞柏完成签到 ,获得积分10
21秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3414487
求助须知:如何正确求助?哪些是违规求助? 3016598
关于积分的说明 8877040
捐赠科研通 2704339
什么是DOI,文献DOI怎么找? 1482676
科研通“疑难数据库(出版商)”最低求助积分说明 685519
邀请新用户注册赠送积分活动 680311