清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multimodal data fusion for geo-hazard prediction in underground mining operation

传感器融合 危害 数据挖掘 计算机科学 工程类 人工智能 有机化学 化学
作者
Ruiyu Liang,Chengguo Zhang,Chaoran Huang,Binghao Li,Serkan Saydam,Ismet Canbulat,Lesley Munsamy
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:193: 110268-110268 被引量:4
标识
DOI:10.1016/j.cie.2024.110268
摘要

Geohazard prediction is one of the most important and challenging tasks in underground mining. It still remains difficult to improve the prediction accuracy and make it compatible with the ever-increasing data in mining, especially when the data are sparsely allocated in a large-scale mining environment. This study introduces an innovative multimodal data fusion approach for geohazard prediction in underground mining to address this challenge. By incorporating visual model data as a novel modality and using interpolated rock mass rating data as a cross-complementary factor, the framework enhances the effectiveness of data fusion. Specific machine learning models were used and validated (e.g., neural networks, SVM, KNN, etc.) for proposed multimodal data fusion, addressing challenges posed by sparsely scattered multidimensional data, which generally have weak spatial connections across diverse datasets. In detail, to enhance spatial connection among diverse datasets, this paper leverage digitalised and gridded CAD file-based visual model data as a foundational carrier, the new modality, to facilitate the establishment of robust internal connections with routine data. Additionally, rock mass rating data is interpolated and aligned with visual model data to enhance spatial connections, improving spatial information-orientated data fusion. Then, to validate the accuracy and efficiency of the novel multimodal data fusion framework, we process and integrate two different routine data from a case study mine. Performance is tested by nine different data combinations, originating from two routine datasets, visual model data, and rock mass rating data. Finally, through comprehensive cross-validation, the proposed multimodal data fusion framework significantly improves the stability of prediction models at a comprehensive mine site scale, with high accuracy and low False-Negative rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
binbinbin完成签到,获得积分20
5秒前
cy完成签到,获得积分10
17秒前
满意的伊完成签到,获得积分10
31秒前
51秒前
John完成签到 ,获得积分10
51秒前
蔡从安完成签到,获得积分20
1分钟前
傲娇而又骄傲完成签到 ,获得积分10
1分钟前
精明晓刚发布了新的文献求助10
1分钟前
星辰大海应助精明晓刚采纳,获得10
1分钟前
Joeswith完成签到,获得积分10
1分钟前
优美的明辉完成签到 ,获得积分10
1分钟前
帅气的沧海完成签到 ,获得积分10
2分钟前
jlwang完成签到,获得积分10
2分钟前
2分钟前
彦嘉发布了新的文献求助10
2分钟前
宇文雨文完成签到 ,获得积分10
2分钟前
3分钟前
末末完成签到 ,获得积分10
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
笨笨完成签到 ,获得积分10
3分钟前
芒芒发paper完成签到 ,获得积分10
4分钟前
顺心蜜粉发布了新的文献求助30
4分钟前
顺心蜜粉完成签到,获得积分10
4分钟前
4分钟前
CC发布了新的文献求助10
4分钟前
淞淞于我完成签到 ,获得积分10
4分钟前
Jenny发布了新的文献求助50
4分钟前
CC完成签到,获得积分10
4分钟前
天天开心完成签到 ,获得积分10
4分钟前
Qian完成签到 ,获得积分10
5分钟前
5分钟前
玄之又玄完成签到,获得积分10
6分钟前
糯米团的完成签到 ,获得积分10
6分钟前
爆米花应助ceeray23采纳,获得20
6分钟前
爆米花应助彦嘉采纳,获得10
6分钟前
6分钟前
ceeray23发布了新的文献求助20
6分钟前
zpc猪猪完成签到,获得积分10
7分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990568
求助须知:如何正确求助?哪些是违规求助? 3532220
关于积分的说明 11256532
捐赠科研通 3271057
什么是DOI,文献DOI怎么找? 1805207
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234