Accelerated, physics-inspired inference of skeletal muscle microstructure from diffusion-weighted MRI

磁共振弥散成像 推论 计算机科学 磁共振成像 人工智能 骨骼肌 扩散 物理 核磁共振 计算机视觉 医学 放射科 内科学 热力学
作者
Noel Naughton,Stacey Cahoon,Bradley P. Sutton,John G. Georgiadis
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3397790
摘要

Muscle health is a critical component of overall health and quality of life. However, current measures of skeletal muscle health take limited account of microstructural variations within muscle, which play a crucial role in mediating muscle function. To address this, we present a physics-inspired, machine learning-based framework for the non-invasive estimation of microstructural organization in skeletal muscle from diffusion-weighted MRI (dMRI) in an uncertainty-aware manner. To reduce the computational expense associated with direct numerical simulations of dMRI physics, a polynomial meta-model is developed that accurately represents the input/output relationships of a high-fidelity numerical model. This meta-model is used to develop a Gaussian process (GP) model that provides voxel-wise estimates and confidence intervals of microstructure organization in skeletal muscle. Given noise-free data, the GP model accurately estimates microstructural parameters. In the presence of noise, the diameter, intracellular diffusion coefficient, and membrane permeability are accurately estimated with narrow confidence intervals, while volume fraction and extracellular diffusion coefficient are poorly estimated and exhibit wide confidence intervals. A reduced-acquisition GP model, consisting of one-third the diffusion-encoding measurements, is shown to predict parameters with similar accuracy to the original model. The fiber diameter and volume fraction estimated by the reduced GP model is validated via histology, with both parameters accurately estimated, demonstrating the capability of the proposed framework as a promising non-invasive tool for assessing skeletal muscle health and function.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
袁美杰发布了新的文献求助10
1秒前
宇宙拿铁完成签到 ,获得积分10
1秒前
留胡子的红酒完成签到 ,获得积分10
2秒前
画凌烟完成签到,获得积分20
2秒前
3秒前
FLZLC发布了新的文献求助10
3秒前
3秒前
3秒前
Young完成签到,获得积分10
3秒前
so发布了新的文献求助10
3秒前
4秒前
5秒前
乐乐应助冷冷子采纳,获得10
6秒前
6秒前
NexusExplorer应助晴空采纳,获得10
7秒前
去码头整点薯条完成签到,获得积分10
9秒前
CipherSage应助kelexh采纳,获得10
9秒前
Cc8完成签到,获得积分10
10秒前
柚子完成签到 ,获得积分10
11秒前
猫小树完成签到 ,获得积分10
12秒前
神勇的晟睿完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
华仔应助袁美杰采纳,获得10
12秒前
13秒前
心1990完成签到,获得积分10
13秒前
13秒前
walker发布了新的文献求助10
14秒前
15秒前
ping完成签到,获得积分10
15秒前
曹梓聪完成签到,获得积分10
15秒前
zhonglv7应助画凌烟采纳,获得10
17秒前
17秒前
标致过客2025完成签到,获得积分10
17秒前
yby发布了新的文献求助10
18秒前
义气凡阳完成签到,获得积分10
18秒前
秣旎完成签到,获得积分10
19秒前
LucyLi发布了新的文献求助10
19秒前
19秒前
21秒前
kelexh发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618656
求助须知:如何正确求助?哪些是违规求助? 4703567
关于积分的说明 14922777
捐赠科研通 4758019
什么是DOI,文献DOI怎么找? 2550151
邀请新用户注册赠送积分活动 1512998
关于科研通互助平台的介绍 1474379