亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accelerated, physics-inspired inference of skeletal muscle microstructure from diffusion-weighted MRI

磁共振弥散成像 推论 计算机科学 磁共振成像 人工智能 骨骼肌 扩散 物理 核磁共振 计算机视觉 医学 放射科 内科学 热力学
作者
Noel Naughton,Stacey Cahoon,Bradley P. Sutton,John G. Georgiadis
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3397790
摘要

Muscle health is a critical component of overall health and quality of life. However, current measures of skeletal muscle health take limited account of microstructural variations within muscle, which play a crucial role in mediating muscle function. To address this, we present a physics-inspired, machine learning-based framework for the non-invasive estimation of microstructural organization in skeletal muscle from diffusion-weighted MRI (dMRI) in an uncertainty-aware manner. To reduce the computational expense associated with direct numerical simulations of dMRI physics, a polynomial meta-model is developed that accurately represents the input/output relationships of a high-fidelity numerical model. This meta-model is used to develop a Gaussian process (GP) model that provides voxel-wise estimates and confidence intervals of microstructure organization in skeletal muscle. Given noise-free data, the GP model accurately estimates microstructural parameters. In the presence of noise, the diameter, intracellular diffusion coefficient, and membrane permeability are accurately estimated with narrow confidence intervals, while volume fraction and extracellular diffusion coefficient are poorly estimated and exhibit wide confidence intervals. A reduced-acquisition GP model, consisting of one-third the diffusion-encoding measurements, is shown to predict parameters with similar accuracy to the original model. The fiber diameter and volume fraction estimated by the reduced GP model is validated via histology, with both parameters accurately estimated, demonstrating the capability of the proposed framework as a promising non-invasive tool for assessing skeletal muscle health and function.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫星星完成签到,获得积分20
11秒前
yiyixt完成签到 ,获得积分10
20秒前
24秒前
北风歌完成签到,获得积分10
26秒前
33秒前
花花完成签到 ,获得积分10
36秒前
酷炫星星发布了新的文献求助10
36秒前
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
58秒前
司空天德发布了新的文献求助10
1分钟前
1分钟前
Nan发布了新的文献求助10
1分钟前
坚定山柳完成签到,获得积分10
2分钟前
古古怪界丶黑大帅完成签到,获得积分10
2分钟前
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
2分钟前
胖小羊完成签到 ,获得积分10
3分钟前
枯叶蝶完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
江梁发布了新的文献求助10
4分钟前
Mio发布了新的文献求助10
4分钟前
科研通AI2S应助江梁采纳,获得10
4分钟前
脑洞疼应助谨慎的夏采纳,获得10
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
小土豆完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
Fung完成签到,获得积分10
5分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788717
求助须知:如何正确求助?哪些是违规求助? 5711184
关于积分的说明 15473848
捐赠科研通 4916722
什么是DOI,文献DOI怎么找? 2646535
邀请新用户注册赠送积分活动 1594215
关于科研通互助平台的介绍 1548634