Accelerated, physics-inspired inference of skeletal muscle microstructure from diffusion-weighted MRI

磁共振弥散成像 推论 计算机科学 磁共振成像 人工智能 骨骼肌 扩散 物理 核磁共振 计算机视觉 医学 放射科 内科学 热力学
作者
Noel Naughton,Stacey Cahoon,Bradley P. Sutton,John G. Georgiadis
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3397790
摘要

Muscle health is a critical component of overall health and quality of life. However, current measures of skeletal muscle health take limited account of microstructural variations within muscle, which play a crucial role in mediating muscle function. To address this, we present a physics-inspired, machine learning-based framework for the non-invasive estimation of microstructural organization in skeletal muscle from diffusion-weighted MRI (dMRI) in an uncertainty-aware manner. To reduce the computational expense associated with direct numerical simulations of dMRI physics, a polynomial meta-model is developed that accurately represents the input/output relationships of a high-fidelity numerical model. This meta-model is used to develop a Gaussian process (GP) model that provides voxel-wise estimates and confidence intervals of microstructure organization in skeletal muscle. Given noise-free data, the GP model accurately estimates microstructural parameters. In the presence of noise, the diameter, intracellular diffusion coefficient, and membrane permeability are accurately estimated with narrow confidence intervals, while volume fraction and extracellular diffusion coefficient are poorly estimated and exhibit wide confidence intervals. A reduced-acquisition GP model, consisting of one-third the diffusion-encoding measurements, is shown to predict parameters with similar accuracy to the original model. The fiber diameter and volume fraction estimated by the reduced GP model is validated via histology, with both parameters accurately estimated, demonstrating the capability of the proposed framework as a promising non-invasive tool for assessing skeletal muscle health and function.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高LL完成签到,获得积分10
刚刚
2秒前
TING发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助30
2秒前
鱼的宇宙发布了新的文献求助10
3秒前
3秒前
liujian发布了新的文献求助10
3秒前
落尽海完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
dichloro完成签到,获得积分10
5秒前
5秒前
落尽海发布了新的文献求助10
5秒前
hajimi发布了新的文献求助10
6秒前
qqqw发布了新的文献求助10
6秒前
6秒前
8秒前
Peth发布了新的文献求助10
8秒前
追寻的夏波应助清秀皓轩采纳,获得10
8秒前
老艺人发布了新的文献求助10
9秒前
别闹闹发布了新的文献求助10
9秒前
ccc完成签到,获得积分10
9秒前
勤奋惜寒完成签到 ,获得积分10
9秒前
dounai发布了新的文献求助30
10秒前
Violazheng228发布了新的文献求助10
10秒前
舒舒陈发布了新的文献求助10
10秒前
夏远航发布了新的文献求助10
11秒前
材料人一枚给材料人一枚的求助进行了留言
11秒前
11秒前
12秒前
Ava应助指沙采纳,获得10
12秒前
12秒前
12秒前
着急毕业的干饭人完成签到,获得积分10
13秒前
电磁鳄完成签到,获得积分10
13秒前
开拖拉机的芍药完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727988
求助须知:如何正确求助?哪些是违规求助? 5310720
关于积分的说明 15312703
捐赠科研通 4875267
什么是DOI,文献DOI怎么找? 2618674
邀请新用户注册赠送积分活动 1568332
关于科研通互助平台的介绍 1524966