Accelerated, physics-inspired inference of skeletal muscle microstructure from diffusion-weighted MRI

磁共振弥散成像 推论 计算机科学 磁共振成像 人工智能 骨骼肌 扩散 物理 核磁共振 计算机视觉 医学 放射科 内科学 热力学
作者
Noel Naughton,Stacey Cahoon,Bradley P. Sutton,John G. Georgiadis
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3397790
摘要

Muscle health is a critical component of overall health and quality of life. However, current measures of skeletal muscle health take limited account of microstructural variations within muscle, which play a crucial role in mediating muscle function. To address this, we present a physics-inspired, machine learning-based framework for the non-invasive estimation of microstructural organization in skeletal muscle from diffusion-weighted MRI (dMRI) in an uncertainty-aware manner. To reduce the computational expense associated with direct numerical simulations of dMRI physics, a polynomial meta-model is developed that accurately represents the input/output relationships of a high-fidelity numerical model. This meta-model is used to develop a Gaussian process (GP) model that provides voxel-wise estimates and confidence intervals of microstructure organization in skeletal muscle. Given noise-free data, the GP model accurately estimates microstructural parameters. In the presence of noise, the diameter, intracellular diffusion coefficient, and membrane permeability are accurately estimated with narrow confidence intervals, while volume fraction and extracellular diffusion coefficient are poorly estimated and exhibit wide confidence intervals. A reduced-acquisition GP model, consisting of one-third the diffusion-encoding measurements, is shown to predict parameters with similar accuracy to the original model. The fiber diameter and volume fraction estimated by the reduced GP model is validated via histology, with both parameters accurately estimated, demonstrating the capability of the proposed framework as a promising non-invasive tool for assessing skeletal muscle health and function.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助gyq采纳,获得10
刚刚
刚刚
adeno发布了新的文献求助10
刚刚
刚刚
粗暴的达发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
清爽映之完成签到,获得积分10
1秒前
发财牛女发布了新的文献求助10
1秒前
墨与笙完成签到,获得积分10
2秒前
2秒前
121314wld发布了新的文献求助10
2秒前
JamesPei应助高高千万采纳,获得20
3秒前
早期早睡发布了新的文献求助10
3秒前
66发布了新的文献求助30
3秒前
小迷糊完成签到 ,获得积分10
3秒前
大模型应助wzx采纳,获得10
3秒前
妩媚的海应助WStarry采纳,获得30
4秒前
xiaoen发布了新的文献求助50
4秒前
ff发布了新的文献求助10
4秒前
4秒前
mlml发布了新的文献求助10
4秒前
5秒前
adeno完成签到,获得积分10
5秒前
崩溃发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
365up完成签到,获得积分10
6秒前
香蕉觅云应助舒服的蝴蝶采纳,获得20
6秒前
赘婿应助肖茜玉采纳,获得30
7秒前
7秒前
桑尼号发布了新的文献求助10
7秒前
61发布了新的文献求助10
7秒前
科研通AI2S应助xueshu采纳,获得10
7秒前
桐桐应助细心的听南采纳,获得30
8秒前
Ava应助蔓蔓要努力采纳,获得30
8秒前
8秒前
今后应助热心的天玉采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731