钨酸盐
锌
压电
功率(物理)
嵌入式系统
材料科学
环境科学
汽车工程
计算机科学
电气工程
工程类
冶金
物理
量子力学
作者
Ragu Sasikumar,Byungki Kim,Roshan Mangal Bhattarai
标识
DOI:10.1016/j.cej.2024.151889
摘要
With the rapid development of research world, the number of researchers and research laboratories is increasing rapidly. Simultaneously, accidents in laboratories are on the rise, drawing significant attention from everyone. To address this issue, the current study demonstrates a real-time safety early warning alarm system aimed at preventing accidents and enhancing safety management in laboratories. We developed a zinc tungstate nanoparticles (NPs) integrated on zinc oxide hexagonal microdiscks (h-MDs) (ZnO–ZnWO4@PDMS) composite based on a novel flexible piezoelectric nanogenerator (FPENG). The observed piezoelectric response was 1.32 V, which is ∼4 times better than that of pure ZnWO4, owing to the synergistic effect of ZnO–ZnWO4@PDMS. When subjected to finger-tapping motion, the FPENG can charge a 1 μF capacitor, and it reached 81 mV within 56 s. Subsequently, the light-emitting diodes (LEDs) are powered with amplification. The FPENG system was demonstrated and validated through real-time application in the laboratory setting, marked as a "caution/restricted" line. The application of the system demonstrated its capability to simultaneously illuminate LEDs and sound alarms when people touch or cross the caution line. Furthermore, the proposed FPENG exhibited ∼660 mV even ∼90 % humidity, with no noticeable electrical changes under different solvents, confirming that the proposed FPENG is not affected by varying humidity and various indoor conditions. These outstanding results and real-time demonstrations unequivocally establish the feasibility of this system in contexts such as bank lockers, metro systems, hilly areas, and more.
科研通智能强力驱动
Strongly Powered by AbleSci AI