Microstructure and wear behavior of laser cladding FeCoCrNiMo coating with gradient transition entropy interlayer

微观结构 材料科学 涂层 复合材料 激光器 包层(金属加工) 冶金 光学 物理
作者
Xiaohan Cui,Pengfei Jiang,Minghao Nie,Jinze Teng,Xingran Li,Zhihui Zhang
出处
期刊:Tribology International [Elsevier BV]
卷期号:198: 109913-109913 被引量:6
标识
DOI:10.1016/j.triboint.2024.109913
摘要

The CoCrNi-FeCoCrNi-FeCoCrNiMo gradient high entropy alloy (GHEA) coatings with good metallurgical properties have been successfully prepared on 316 stainless steel by laser cladding (LC). The microstructure, element distribution, microhardness and wear behavior of HEA coating were investigated by SEM, EDS, hardness test and wear test, respectively. The results show that the design of the entropy-varying gradient structure improves the bonding quality of the 316 stainless steel and the FeCoCrNiMo coating. The phase compositions of FeCoCrNiMo HEA coating and CoCrNi-FeCoCrNi-FeCoCrNiMo GHEA coating contain face-centered cubic (FCC) and σ phases. The surface microstructure of the CoCrNi-FeCoCrNi-FeCoCrNiMo GHEA coating is much finer than FeCoCrNiMo HEA coating. The microhardness and wear resistance of the CoCrNi-FeCoCrNi-FeCoCrNiMo GHEA coatings are significantly improved compared to the FeCoCrNiMo HEA coatings directly deposited on the 316 stainless steel. The CoCrNi-FeCoCrNi-FeCoCrNiMo GHEA coatings have high hardness of 840HV. Moreover, the results show that the shift in the wear mechanism is evident within the GHEA coatings, from more severe oxidized wear, adhesive wear and slight deformation to abrasive wear, which can significantly reduce the wear rate of the HEA coatings in friction process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚守初心发布了新的文献求助10
刚刚
刚刚
1秒前
Ava应助zzx采纳,获得10
1秒前
orixero应助义气靖仇采纳,获得10
1秒前
帕尼灬尼发布了新的文献求助10
1秒前
1huiqina发布了新的文献求助10
1秒前
今后应助Daisy123k采纳,获得10
1秒前
科研狗完成签到,获得积分10
2秒前
3秒前
3秒前
无花果应助123345采纳,获得10
3秒前
zxf发布了新的文献求助10
5秒前
111发布了新的文献求助20
5秒前
彭于晏应助加油采纳,获得10
6秒前
6秒前
poison发布了新的文献求助10
6秒前
4433发布了新的文献求助10
7秒前
充电宝应助冰冷天蝎座采纳,获得10
7秒前
8秒前
在水一方应助帕尼灬尼采纳,获得10
9秒前
9秒前
丘比特应助Ir采纳,获得10
9秒前
劲秉应助ZKHIT采纳,获得200
9秒前
问你有没有发挥完成签到,获得积分10
9秒前
9秒前
9秒前
星辰大海应助HJJHJH采纳,获得10
10秒前
11秒前
ty发布了新的文献求助10
11秒前
11秒前
慕青应助poison采纳,获得10
12秒前
2y发布了新的文献求助10
12秒前
12秒前
蛋挞好好吃完成签到,获得积分10
12秒前
科研通AI2S应助欣喜的曼柔采纳,获得10
13秒前
zzx发布了新的文献求助10
13秒前
852应助洪婉馨采纳,获得10
15秒前
默默地读文献应助快乐茗采纳,获得10
15秒前
Demon发布了新的文献求助10
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735018
求助须知:如何正确求助?哪些是违规求助? 3278902
关于积分的说明 10012243
捐赠科研通 2995542
什么是DOI,文献DOI怎么找? 1643492
邀请新用户注册赠送积分活动 781270
科研通“疑难数据库(出版商)”最低求助积分说明 749338