Identifying radiogenomic associations of breast cancer based on DCE‐MRI by using Siamese Neural Network with manufacturer bias normalization

规范化(社会学) 乳腺癌 人工智能 人工神经网络 分割 计算机科学 磁共振成像 交叉验证 模式识别(心理学) 分级(工程) 深度学习 无线电技术 感兴趣区域 医学 癌症 放射科 内科学 生物 社会学 人类学 生态学
作者
Junhua Chen,Haiyan Zeng,Yanyan Cheng,Banghua Yang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17266
摘要

Abstract Background and Purpose The immunohistochemical test (IHC) for Human Epidermal Growth Factor Receptor 2 (HER2) and hormone receptors (HR) provides prognostic information and guides treatment for patients with invasive breast cancer. The objective of this paper is to establish a non‐invasive system for identifying HER2 and HR in breast cancer using dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI). Methods In light of the absence of high‐performance algorithms and external validation in previously published methods, this study utilizes 3D deep features and radiomics features to represent the information of the Region of Interest (ROI). A Siamese Neural Network was employed as the classifier, with 3D deep features and radiomics features serving as the network input. To neutralize manufacturer bias, a batch effect normalization method, ComBat, was introduced. To enhance the reliability of the study, two datasets, Predict Your Therapeutic Response with Imaging and moLecular Analysis (I‐SPY 1) and I‐SPY 2, were incorporated. I‐SPY 2 was utilized for model training and validation, while I‐SPY 1 was exclusively employed for external validation. Additionally, a breast tumor segmentation network was trained to improve radiomic feature extraction. Results The results indicate that our approach achieved an average Area Under the Curve (AUC) of 0.632, with a Standard Error of the Mean (SEM) of 0.042 for HER2 prediction in the I‐SPY 2 dataset. For HR prediction, our method attained an AUC of 0.635 (SEM 0.041), surpassing other published methods in the AUC metric. Moreover, the proposed method yielded competitive results in other metrics. In external validation using the I‐SPY 1 dataset, our approach achieved an AUC of 0.567 (SEM 0.032) for HR prediction and 0.563 (SEM 0.033) for HER2 prediction. Conclusion This study proposes a non‐invasive system for identifying HER2 and HR in breast cancer. Although the results do not conclusively demonstrate superiority in both tasks, they indicate that the proposed method achieved good performance and is a competitive classifier compared to other reference methods. Ablation studies demonstrate that both radiomics features and deep features for the Siamese Neural Network are beneficial for the model. The introduced manufacturer bias normalization method has been shown to enhance the method's performance. Furthermore, the external validation of the method enhances the reliability of this research. Source code, pre‐trained segmentation network, Radiomics and deep features, data for statistical analysis, and Supporting Information of this article are online at: https://github.com/FORRESTHUACHEN/Siamese_Neural_Network_based_Brest_cancer_Radiogenomic .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzzzzzzzzzz发布了新的文献求助10
刚刚
222完成签到 ,获得积分10
刚刚
1秒前
1秒前
2秒前
Tomice完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
霸气鹏飞发布了新的文献求助10
4秒前
coldspringhao完成签到,获得积分10
4秒前
4秒前
Tomice发布了新的文献求助10
5秒前
6秒前
研友_Zrl2pL完成签到,获得积分20
6秒前
小糯米发布了新的文献求助10
6秒前
桔梗发布了新的文献求助10
6秒前
虚心醉蝶发布了新的文献求助10
7秒前
CipherSage应助LL采纳,获得10
7秒前
Jason完成签到,获得积分10
7秒前
耶耶喵喵完成签到 ,获得积分10
7秒前
嘟嘟发布了新的文献求助10
7秒前
机灵飞兰发布了新的文献求助10
7秒前
9秒前
研友_Zrl2pL发布了新的文献求助10
9秒前
雨水发布了新的文献求助10
9秒前
landewen发布了新的文献求助10
9秒前
curtisness应助william_nieh采纳,获得10
10秒前
ahaaa发布了新的文献求助10
10秒前
11秒前
Huanghong完成签到,获得积分10
11秒前
霸气鹏飞完成签到,获得积分20
11秒前
呵浅陌完成签到,获得积分10
11秒前
脑洞疼应助zzzzzzzzzzzz采纳,获得10
12秒前
田様应助潇洒的达采纳,获得10
12秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137260
求助须知:如何正确求助?哪些是违规求助? 2788392
关于积分的说明 7785921
捐赠科研通 2444458
什么是DOI,文献DOI怎么找? 1299916
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023