Identifying radiogenomic associations of breast cancer based on DCE‐MRI by using Siamese Neural Network with manufacturer bias normalization

规范化(社会学) 乳腺癌 人工智能 人工神经网络 分割 计算机科学 磁共振成像 交叉验证 模式识别(心理学) 分级(工程) 深度学习 无线电技术 感兴趣区域 医学 癌症 放射科 内科学 生物 社会学 生态学 人类学
作者
Junhua Chen,Haiyan Zeng,Yanyan Cheng,Banghua Yang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17266
摘要

Abstract Background and Purpose The immunohistochemical test (IHC) for Human Epidermal Growth Factor Receptor 2 (HER2) and hormone receptors (HR) provides prognostic information and guides treatment for patients with invasive breast cancer. The objective of this paper is to establish a non‐invasive system for identifying HER2 and HR in breast cancer using dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI). Methods In light of the absence of high‐performance algorithms and external validation in previously published methods, this study utilizes 3D deep features and radiomics features to represent the information of the Region of Interest (ROI). A Siamese Neural Network was employed as the classifier, with 3D deep features and radiomics features serving as the network input. To neutralize manufacturer bias, a batch effect normalization method, ComBat, was introduced. To enhance the reliability of the study, two datasets, Predict Your Therapeutic Response with Imaging and moLecular Analysis (I‐SPY 1) and I‐SPY 2, were incorporated. I‐SPY 2 was utilized for model training and validation, while I‐SPY 1 was exclusively employed for external validation. Additionally, a breast tumor segmentation network was trained to improve radiomic feature extraction. Results The results indicate that our approach achieved an average Area Under the Curve (AUC) of 0.632, with a Standard Error of the Mean (SEM) of 0.042 for HER2 prediction in the I‐SPY 2 dataset. For HR prediction, our method attained an AUC of 0.635 (SEM 0.041), surpassing other published methods in the AUC metric. Moreover, the proposed method yielded competitive results in other metrics. In external validation using the I‐SPY 1 dataset, our approach achieved an AUC of 0.567 (SEM 0.032) for HR prediction and 0.563 (SEM 0.033) for HER2 prediction. Conclusion This study proposes a non‐invasive system for identifying HER2 and HR in breast cancer. Although the results do not conclusively demonstrate superiority in both tasks, they indicate that the proposed method achieved good performance and is a competitive classifier compared to other reference methods. Ablation studies demonstrate that both radiomics features and deep features for the Siamese Neural Network are beneficial for the model. The introduced manufacturer bias normalization method has been shown to enhance the method's performance. Furthermore, the external validation of the method enhances the reliability of this research. Source code, pre‐trained segmentation network, Radiomics and deep features, data for statistical analysis, and Supporting Information of this article are online at: https://github.com/FORRESTHUACHEN/Siamese_Neural_Network_based_Brest_cancer_Radiogenomic .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助leyi采纳,获得30
2秒前
自由滑大王完成签到 ,获得积分10
3秒前
4秒前
SciGPT应助魔幻乘云采纳,获得10
5秒前
江姜酱先生完成签到,获得积分10
7秒前
图图羊完成签到,获得积分10
7秒前
思源应助不安的冷荷采纳,获得10
8秒前
木鸽子发布了新的文献求助30
10秒前
10秒前
psq0061应助鲜艳的芹采纳,获得20
11秒前
psylan应助图图羊采纳,获得10
11秒前
saslaosiji完成签到,获得积分10
11秒前
12秒前
渭水飞熊发布了新的文献求助10
12秒前
13秒前
fenglin4620发布了新的文献求助10
15秒前
15秒前
yang完成签到,获得积分10
16秒前
18秒前
废物打工人完成签到,获得积分10
19秒前
哈哈哈哈发布了新的文献求助10
19秒前
22秒前
芬达完成签到,获得积分10
22秒前
23秒前
魔幻乘云完成签到,获得积分20
23秒前
25秒前
chen完成签到,获得积分10
28秒前
魔幻乘云发布了新的文献求助10
28秒前
蛇蛇王子完成签到 ,获得积分10
28秒前
浮游应助saslaosiji采纳,获得10
30秒前
程老六完成签到 ,获得积分10
31秒前
大大小发布了新的文献求助20
32秒前
32秒前
老北京发布了新的文献求助10
32秒前
刻苦的媚颜完成签到 ,获得积分10
33秒前
艾路完成签到,获得积分10
36秒前
前行的灿发布了新的文献求助10
37秒前
37秒前
爱喝佳得乐完成签到,获得积分10
39秒前
酷波er应助程天佑采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841