Identifying radiogenomic associations of breast cancer based on DCE‐MRI by using Siamese Neural Network with manufacturer bias normalization

规范化(社会学) 乳腺癌 人工智能 人工神经网络 分割 计算机科学 磁共振成像 交叉验证 模式识别(心理学) 分级(工程) 深度学习 无线电技术 感兴趣区域 医学 癌症 放射科 内科学 生物 社会学 生态学 人类学
作者
Junhua Chen,Haiyan Zeng,Yanyan Cheng,Banghua Yang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17266
摘要

Abstract Background and Purpose The immunohistochemical test (IHC) for Human Epidermal Growth Factor Receptor 2 (HER2) and hormone receptors (HR) provides prognostic information and guides treatment for patients with invasive breast cancer. The objective of this paper is to establish a non‐invasive system for identifying HER2 and HR in breast cancer using dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI). Methods In light of the absence of high‐performance algorithms and external validation in previously published methods, this study utilizes 3D deep features and radiomics features to represent the information of the Region of Interest (ROI). A Siamese Neural Network was employed as the classifier, with 3D deep features and radiomics features serving as the network input. To neutralize manufacturer bias, a batch effect normalization method, ComBat, was introduced. To enhance the reliability of the study, two datasets, Predict Your Therapeutic Response with Imaging and moLecular Analysis (I‐SPY 1) and I‐SPY 2, were incorporated. I‐SPY 2 was utilized for model training and validation, while I‐SPY 1 was exclusively employed for external validation. Additionally, a breast tumor segmentation network was trained to improve radiomic feature extraction. Results The results indicate that our approach achieved an average Area Under the Curve (AUC) of 0.632, with a Standard Error of the Mean (SEM) of 0.042 for HER2 prediction in the I‐SPY 2 dataset. For HR prediction, our method attained an AUC of 0.635 (SEM 0.041), surpassing other published methods in the AUC metric. Moreover, the proposed method yielded competitive results in other metrics. In external validation using the I‐SPY 1 dataset, our approach achieved an AUC of 0.567 (SEM 0.032) for HR prediction and 0.563 (SEM 0.033) for HER2 prediction. Conclusion This study proposes a non‐invasive system for identifying HER2 and HR in breast cancer. Although the results do not conclusively demonstrate superiority in both tasks, they indicate that the proposed method achieved good performance and is a competitive classifier compared to other reference methods. Ablation studies demonstrate that both radiomics features and deep features for the Siamese Neural Network are beneficial for the model. The introduced manufacturer bias normalization method has been shown to enhance the method's performance. Furthermore, the external validation of the method enhances the reliability of this research. Source code, pre‐trained segmentation network, Radiomics and deep features, data for statistical analysis, and Supporting Information of this article are online at: https://github.com/FORRESTHUACHEN/Siamese_Neural_Network_based_Brest_cancer_Radiogenomic .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang-leo发布了新的文献求助10
刚刚
娜写年华完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
NexusExplorer应助明理瑾瑜采纳,获得10
1秒前
赘婿应助沉静幻柏采纳,获得10
2秒前
研友_VZG7GZ应助wwk采纳,获得10
2秒前
3秒前
3秒前
轻松囧完成签到,获得积分20
3秒前
3秒前
hooke发布了新的文献求助10
4秒前
高飞完成签到,获得积分10
4秒前
852应助nkmenghan采纳,获得10
4秒前
Cheng发布了新的文献求助10
4秒前
bling发布了新的文献求助10
4秒前
何小芳完成签到,获得积分10
4秒前
HHH发布了新的文献求助30
5秒前
5秒前
5秒前
5秒前
今后应助微笑无敌瑶采纳,获得10
6秒前
6秒前
酷钱完成签到 ,获得积分10
6秒前
FashionBoy应助zyyy采纳,获得10
6秒前
昼夜本色发布了新的文献求助10
6秒前
李健的小迷弟应助药小博采纳,获得10
6秒前
彭于晏应助清晨杨采纳,获得10
6秒前
7秒前
7秒前
丘比特应助轻松囧采纳,获得10
7秒前
火速上前线完成签到,获得积分10
7秒前
seed85发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
龟龟发布了新的文献求助10
9秒前
even应助文件撤销了驳回
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807