Identifying radiogenomic associations of breast cancer based on DCE‐MRI by using Siamese Neural Network with manufacturer bias normalization

规范化(社会学) 乳腺癌 人工智能 人工神经网络 分割 计算机科学 磁共振成像 交叉验证 模式识别(心理学) 分级(工程) 深度学习 无线电技术 感兴趣区域 医学 癌症 放射科 内科学 生物 社会学 生态学 人类学
作者
Junhua Chen,Haiyan Zeng,Yanyan Cheng,Banghua Yang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17266
摘要

Abstract Background and Purpose The immunohistochemical test (IHC) for Human Epidermal Growth Factor Receptor 2 (HER2) and hormone receptors (HR) provides prognostic information and guides treatment for patients with invasive breast cancer. The objective of this paper is to establish a non‐invasive system for identifying HER2 and HR in breast cancer using dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI). Methods In light of the absence of high‐performance algorithms and external validation in previously published methods, this study utilizes 3D deep features and radiomics features to represent the information of the Region of Interest (ROI). A Siamese Neural Network was employed as the classifier, with 3D deep features and radiomics features serving as the network input. To neutralize manufacturer bias, a batch effect normalization method, ComBat, was introduced. To enhance the reliability of the study, two datasets, Predict Your Therapeutic Response with Imaging and moLecular Analysis (I‐SPY 1) and I‐SPY 2, were incorporated. I‐SPY 2 was utilized for model training and validation, while I‐SPY 1 was exclusively employed for external validation. Additionally, a breast tumor segmentation network was trained to improve radiomic feature extraction. Results The results indicate that our approach achieved an average Area Under the Curve (AUC) of 0.632, with a Standard Error of the Mean (SEM) of 0.042 for HER2 prediction in the I‐SPY 2 dataset. For HR prediction, our method attained an AUC of 0.635 (SEM 0.041), surpassing other published methods in the AUC metric. Moreover, the proposed method yielded competitive results in other metrics. In external validation using the I‐SPY 1 dataset, our approach achieved an AUC of 0.567 (SEM 0.032) for HR prediction and 0.563 (SEM 0.033) for HER2 prediction. Conclusion This study proposes a non‐invasive system for identifying HER2 and HR in breast cancer. Although the results do not conclusively demonstrate superiority in both tasks, they indicate that the proposed method achieved good performance and is a competitive classifier compared to other reference methods. Ablation studies demonstrate that both radiomics features and deep features for the Siamese Neural Network are beneficial for the model. The introduced manufacturer bias normalization method has been shown to enhance the method's performance. Furthermore, the external validation of the method enhances the reliability of this research. Source code, pre‐trained segmentation network, Radiomics and deep features, data for statistical analysis, and Supporting Information of this article are online at: https://github.com/FORRESTHUACHEN/Siamese_Neural_Network_based_Brest_cancer_Radiogenomic .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
1秒前
Ava应助杨潇丶丶采纳,获得10
1秒前
1秒前
1秒前
抹茶发布了新的文献求助10
2秒前
fantasy完成签到,获得积分20
2秒前
ZYY完成签到,获得积分20
2秒前
2秒前
HWL完成签到,获得积分10
3秒前
桃子e发布了新的文献求助10
3秒前
wangli发布了新的文献求助10
3秒前
3秒前
3秒前
llj完成签到,获得积分10
3秒前
木木 12完成签到,获得积分10
3秒前
小半仙发布了新的文献求助10
4秒前
4秒前
4秒前
懒得理完成签到 ,获得积分10
4秒前
体贴半仙完成签到,获得积分20
4秒前
yu完成签到,获得积分10
5秒前
科研通AI6应助中微子采纳,获得10
5秒前
赘婿应助Quentin9998采纳,获得10
5秒前
酷波er应助dongjingbutaire采纳,获得10
5秒前
猪猪猪发布了新的文献求助10
5秒前
研友_8y2G0L发布了新的文献求助30
5秒前
牟若溪发布了新的文献求助10
5秒前
内向玉兰完成签到,获得积分10
6秒前
夜星子发布了新的文献求助10
6秒前
务实的手套完成签到,获得积分10
7秒前
所所应助唠叨的以柳采纳,获得10
7秒前
SciGPT应助海绵宝宝采纳,获得10
8秒前
宋世伟发布了新的文献求助10
8秒前
水123发布了新的文献求助10
8秒前
lili发布了新的文献求助10
9秒前
CipherSage应助欢喜幻桃采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667927
求助须知:如何正确求助?哪些是违规求助? 4888141
关于积分的说明 15122164
捐赠科研通 4826686
什么是DOI,文献DOI怎么找? 2584281
邀请新用户注册赠送积分活动 1538179
关于科研通互助平台的介绍 1496440