Energy-saving operation in urban rail transit: A deep reinforcement learning approach with speed optimization

强化学习 能源消耗 火车 准时 计算机科学 高效能源利用 模拟 数学优化 汽车工程 工程类 运输工程 人工智能 数学 地图学 地理 电气工程
作者
Da‐Han Wang,Jianjun Wu,Yun Wei,Ximing Chang,Haodong Yin
出处
期刊:Travel behaviour and society [Elsevier BV]
卷期号:36: 100796-100796 被引量:5
标识
DOI:10.1016/j.tbs.2024.100796
摘要

The energy consumption of urban rail transit plays a significant role in the operating costs of trains. It is particularly crucial to decrease the energy consumption of the traction power supply in subway systems, as it accounts for approximately half of the total energy consumption of the subway operating organization. To overcome the limitations of traditional real-time speed profile generation methods and the limited exploration capabilities of popular reinforcement learning algorithms in the speed domain, this paper presents the Energy-Saving Maximum Entropy Deep Reinforcement Learning (ES-MEDRL) algorithm. The ES-MEDRL algorithm incorporates Lagrange multipliers and maximum policy entropy as penalties to formulate a novel objective function. This function aims to intensify exploration in the speed domain, minimize train traction energy consumption, and ensure a balance between ride comfort, punctuality, and safety within the subway system. This leads to the optimization of speed profile strategies. To further reduce energy consumption, this paper proposes a secondary optimization strategy for the energy-saving speed profile. This approach involves trading acceptable travel time for improved energy efficiency. To validate the performance of the proposed model and algorithm, numerical experiments are conducted using the Yizhuang Line of the Beijing Metro. The findings demonstrate a minimum 20 % increase in energy efficiency with the ES-MEDRL algorithm compared to manual driving. This algorithm can guide energy-efficient train operations at the planning level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凉逗听完成签到,获得积分10
1秒前
小王完成签到,获得积分10
2秒前
2秒前
3秒前
隐形曼青应助bobby采纳,获得10
3秒前
爱吃大米发布了新的文献求助10
4秒前
5秒前
子子完成签到,获得积分10
5秒前
5秒前
18621058639完成签到,获得积分10
5秒前
美满的机器猫完成签到,获得积分10
5秒前
TT完成签到 ,获得积分10
6秒前
6秒前
hc完成签到,获得积分10
6秒前
6秒前
桐桐应助平凡的世界采纳,获得10
8秒前
9秒前
nanoyy完成签到,获得积分10
9秒前
10秒前
10秒前
乐乐应助爱吃大米采纳,获得10
10秒前
11秒前
dt完成签到,获得积分10
11秒前
12秒前
Ying发布了新的文献求助10
12秒前
胖虎完成签到,获得积分10
12秒前
天一应助蜉蝣采纳,获得10
14秒前
豆豆发布了新的文献求助10
14秒前
14秒前
Treasure完成签到,获得积分10
14秒前
15秒前
15秒前
weidongwu完成签到,获得积分10
16秒前
牛贝贝发布了新的文献求助10
16秒前
CXH发布了新的文献求助10
17秒前
18秒前
研友_VZGvVn发布了新的文献求助10
18秒前
思源应助笑笑要学习采纳,获得10
18秒前
二三完成签到,获得积分10
19秒前
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734798
求助须知:如何正确求助?哪些是违规求助? 3278733
关于积分的说明 10011078
捐赠科研通 2995408
什么是DOI,文献DOI怎么找? 1643417
邀请新用户注册赠送积分活动 781158
科研通“疑难数据库(出版商)”最低求助积分说明 749285