An automated algorithm for stereoelectroencephalography electrode localization and labelling

立体脑电图 计算机科学 人工智能 管道(软件) 电极 计算机视觉 算法 模式识别(心理学) 脑电图 癫痫外科 医学 精神科 物理化学 化学 程序设计语言
作者
Simeon M. Wong,Olivia N. Arski,George M. Ibrahim
出处
期刊:Seizure-european Journal of Epilepsy [Elsevier]
卷期号:117: 293-297
标识
DOI:10.1016/j.seizure.2024.04.002
摘要

Purpose Stereoelectroencephalography (sEEG) is increasingly utilized for localization of seizure foci, functional mapping, and neurocognitive research due to its ability to target deep and difficult to reach anatomical locations and to study in vivo brain function with a high signal-to-noise ratio. The research potential of sEEG is constrained by the need for accurate localization of the implanted electrodes in a common template space for group analyses. Methods We present an algorithm to automate the grouping of sEEG electrodes by trajectories, labelled by target and insertion point. This algorithm forms the core of a pipeline that fully automates the entire process of electrode localization in standard space, using raw CT and MRI images to produce atlas labelled MNI coordinates. Results Across 196 trajectories from 20 patients, the pipeline successfully processed 190 trajectories with localizations within 0.25±0.55 mm of the manual annotation by two reviewers. Six electrode trajectories were not directly identified due to metal artifacts and locations were interpolated based on the first and last contact location and the number of contacts in that electrode as listed in the surgical record. Conclusion We introduce our algorithm and pipeline for automatically localizing, grouping, and classifying sEEG electrodes from raw CT and MRI. Our algorithm adds to existing pipelines and toolboxes for electrode localization by automating the manual step of marking and grouping electrodes, thereby expedites the analyses of sEEG data, particularly in large datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shark00完成签到,获得积分10
1秒前
FashionBoy应助机智以筠采纳,获得10
1秒前
吴彦祖完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
slim完成签到 ,获得积分10
3秒前
过意发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
lllate发布了新的文献求助30
4秒前
4秒前
天天快乐应助牛帮帮采纳,获得10
4秒前
情怀应助uu采纳,获得10
4秒前
深情安青应助曹梦龙采纳,获得10
5秒前
Jasper应助崔崔采纳,获得10
5秒前
5秒前
大男完成签到,获得积分10
5秒前
丸子发布了新的文献求助10
6秒前
科研通AI6应助Dong213采纳,获得10
6秒前
6秒前
6秒前
ycy发布了新的文献求助10
7秒前
7秒前
lll关闭了lll文献求助
8秒前
Vanilla完成签到,获得积分10
8秒前
lisier发布了新的文献求助10
9秒前
9秒前
大胆诗云发布了新的文献求助10
9秒前
9秒前
yellow完成签到 ,获得积分10
9秒前
156666完成签到,获得积分10
10秒前
科目三应助zzh_fighting采纳,获得10
11秒前
清爽含灵发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
tq发布了新的文献求助10
14秒前
14秒前
敏感初露发布了新的文献求助10
14秒前
harry2021完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521079
求助须知:如何正确求助?哪些是违规求助? 4612571
关于积分的说明 14534355
捐赠科研通 4550094
什么是DOI,文献DOI怎么找? 2493467
邀请新用户注册赠送积分活动 1474588
关于科研通互助平台的介绍 1446154