An automated algorithm for stereoelectroencephalography electrode localization and labelling

立体脑电图 计算机科学 人工智能 管道(软件) 电极 计算机视觉 算法 模式识别(心理学) 脑电图 癫痫外科 医学 精神科 物理化学 化学 程序设计语言
作者
Simeon M. Wong,Olivia N. Arski,George M. Ibrahim
出处
期刊:Seizure-european Journal of Epilepsy [Elsevier BV]
卷期号:117: 293-297
标识
DOI:10.1016/j.seizure.2024.04.002
摘要

Purpose Stereoelectroencephalography (sEEG) is increasingly utilized for localization of seizure foci, functional mapping, and neurocognitive research due to its ability to target deep and difficult to reach anatomical locations and to study in vivo brain function with a high signal-to-noise ratio. The research potential of sEEG is constrained by the need for accurate localization of the implanted electrodes in a common template space for group analyses. Methods We present an algorithm to automate the grouping of sEEG electrodes by trajectories, labelled by target and insertion point. This algorithm forms the core of a pipeline that fully automates the entire process of electrode localization in standard space, using raw CT and MRI images to produce atlas labelled MNI coordinates. Results Across 196 trajectories from 20 patients, the pipeline successfully processed 190 trajectories with localizations within 0.25±0.55 mm of the manual annotation by two reviewers. Six electrode trajectories were not directly identified due to metal artifacts and locations were interpolated based on the first and last contact location and the number of contacts in that electrode as listed in the surgical record. Conclusion We introduce our algorithm and pipeline for automatically localizing, grouping, and classifying sEEG electrodes from raw CT and MRI. Our algorithm adds to existing pipelines and toolboxes for electrode localization by automating the manual step of marking and grouping electrodes, thereby expedites the analyses of sEEG data, particularly in large datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助科研通管家采纳,获得20
刚刚
科研通AI6应助清新的问枫采纳,获得10
刚刚
OvO完成签到,获得积分10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得30
刚刚
今后应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
haaaz发布了新的文献求助10
1秒前
laber应助科研通管家采纳,获得30
1秒前
所所应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得50
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助LaTeXer采纳,获得10
3秒前
一二发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
李海艳发布了新的文献求助10
3秒前
坚忍完成签到,获得积分20
4秒前
4秒前
我是老大应助hhhh采纳,获得10
4秒前
4秒前
5秒前
樱桃小丸子完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437