已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Heat-Resistant Polymer Discovery by Utilizing Interpretable Graph Neural Network with Small Data

化学空间 可解释性 稳健性(进化) 人工神经网络 生物系统 直觉 机器学习 人工智能 玻璃化转变 聚合物 计算机科学 材料科学 纳米技术 化学 药物发现 生物化学 哲学 认识论 生物 复合材料 基因
作者
Haoke Qiu,Jingying Wang,Xuepeng Qiu,Xuemin Dai,Zhao‐Yan Sun
出处
期刊:Macromolecules [American Chemical Society]
卷期号:57 (8): 3515-3528 被引量:10
标识
DOI:10.1021/acs.macromol.4c00508
摘要

Polymers with exceptional heat resistance are critically valuable in numerous domains, particularly as essential components of flexible organic light-emitting diodes. Among these, polyimides (PIs) demonstrate significant potential as substrate candidates for these next-generation flexible displays due to their robustness. However, traditional Edisonian approaches struggle to navigate the vast chemical space of PIs and also pose challenges of small data, which constrains the learnable chemical space for machine learning (ML). In this study, we propose a chemical-knowledge-based strategy to facilitate the design of PIs with high glass transition temperature (Tg) utilizing an atom-wise graph neural network and small data. Inspired by chemical intuition, our strategy leverages the available data on the same property (i.e., Tg) from other polymers, which is beneficial for expanding the chemical space used for ML. The trained ML model achieves an impressive performance in predicting Tg of polymers. We have also investigated the impact of the chemical space encompassed by the data sets on the performance of ML models. Through interpretability analysis, it has been demonstrated that our ML model has learned more accurate chemical knowledge. Utilizing the ML model, 89 PIs were rapidly discovered from over 106 candidates, with experimental validation confirmed their exceptional heat resistance of the most promising PIs, which have been found to possess a Tg exceeding 405 °C and even 450 °C. These results, along with the trained ML model, have the potential to accelerate the discovery of polymer substrate materials for next-generation flexible display devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王逗逗发布了新的文献求助10
2秒前
2秒前
4秒前
handsomecat完成签到,获得积分10
4秒前
liuguoqing发布了新的文献求助10
5秒前
爆米花应助LSS采纳,获得10
6秒前
明亮无颜发布了新的文献求助10
7秒前
乐橙发布了新的文献求助10
9秒前
10秒前
Tuesday发布了新的文献求助10
11秒前
深情安青应助王逗逗采纳,获得10
14秒前
乐橙完成签到,获得积分10
15秒前
哈哈发布了新的文献求助10
15秒前
赘婿应助BioRick采纳,获得10
17秒前
maox1aoxin应助地平采纳,获得30
18秒前
香蕉觅云应助呵呵采纳,获得10
21秒前
22秒前
言堇完成签到 ,获得积分10
22秒前
虚拟的柠檬完成签到,获得积分10
23秒前
领导范儿应助Odingers采纳,获得10
25秒前
cckyt完成签到,获得积分10
26秒前
windtalker发布了新的文献求助10
26秒前
所所应助哈哈采纳,获得10
28秒前
29秒前
王扭扭完成签到,获得积分20
29秒前
李健应助121231233采纳,获得10
29秒前
33秒前
serendipity完成签到 ,获得积分10
33秒前
33秒前
lorenz发布了新的文献求助10
34秒前
呵呵发布了新的文献求助10
38秒前
水牛发布了新的文献求助10
40秒前
40秒前
Akim应助11223344采纳,获得10
41秒前
42秒前
summer完成签到 ,获得积分10
43秒前
back you up应助王扭扭采纳,获得40
44秒前
tangz完成签到,获得积分20
44秒前
潇洒迎夏发布了新的文献求助10
46秒前
水牛完成签到,获得积分20
47秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671101
求助须知:如何正确求助?哪些是违规求助? 3228010
关于积分的说明 9777928
捐赠科研通 2938234
什么是DOI,文献DOI怎么找? 1609784
邀请新用户注册赠送积分活动 760457
科研通“疑难数据库(出版商)”最低求助积分说明 735962