Heat-Resistant Polymer Discovery by Utilizing Interpretable Graph Neural Network with Small Data

化学空间 可解释性 稳健性(进化) 人工神经网络 生物系统 直觉 机器学习 人工智能 玻璃化转变 聚合物 计算机科学 材料科学 纳米技术 化学 药物发现 生物化学 哲学 认识论 生物 复合材料 基因
作者
Haoke Qiu,Jingying Wang,Xuepeng Qiu,Xuemin Dai,Zhao‐Yan Sun
出处
期刊:Macromolecules [American Chemical Society]
卷期号:57 (8): 3515-3528
标识
DOI:10.1021/acs.macromol.4c00508
摘要

Polymers with exceptional heat resistance are critically valuable in numerous domains, particularly as essential components of flexible organic light-emitting diodes. Among these, polyimides (PIs) demonstrate significant potential as substrate candidates for these next-generation flexible displays due to their robustness. However, traditional Edisonian approaches struggle to navigate the vast chemical space of PIs and also pose challenges of small data, which constrains the learnable chemical space for machine learning (ML). In this study, we propose a chemical-knowledge-based strategy to facilitate the design of PIs with high glass transition temperature (Tg) utilizing an atom-wise graph neural network and small data. Inspired by chemical intuition, our strategy leverages the available data on the same property (i.e., Tg) from other polymers, which is beneficial for expanding the chemical space used for ML. The trained ML model achieves an impressive performance in predicting Tg of polymers. We have also investigated the impact of the chemical space encompassed by the data sets on the performance of ML models. Through interpretability analysis, it has been demonstrated that our ML model has learned more accurate chemical knowledge. Utilizing the ML model, 89 PIs were rapidly discovered from over 106 candidates, with experimental validation confirmed their exceptional heat resistance of the most promising PIs, which have been found to possess a Tg exceeding 405 °C and even 450 °C. These results, along with the trained ML model, have the potential to accelerate the discovery of polymer substrate materials for next-generation flexible display devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liutianbao发布了新的文献求助10
刚刚
Esteem发布了新的文献求助10
1秒前
欢喜的小海豚应助Silence采纳,获得10
5秒前
6秒前
nowfitness完成签到,获得积分10
6秒前
6秒前
10秒前
orixero应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
yufanhui应助科研通管家采纳,获得10
10秒前
不配.应助科研通管家采纳,获得10
10秒前
11秒前
yufanhui应助科研通管家采纳,获得10
11秒前
11秒前
yufanhui应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
stronging发布了新的文献求助10
12秒前
路舟行完成签到,获得积分10
13秒前
13秒前
曦子曦子完成签到,获得积分10
14秒前
Cheny完成签到 ,获得积分10
15秒前
16秒前
17秒前
斯文败类应助stronging采纳,获得10
18秒前
Luis发布了新的文献求助10
19秒前
高丽娜发布了新的文献求助10
20秒前
甘草三七完成签到,获得积分10
21秒前
21秒前
周星星完成签到,获得积分20
26秒前
天御雪完成签到,获得积分10
27秒前
爱吃汤圆的猫完成签到 ,获得积分10
31秒前
32秒前
32秒前
田様应助轻松板栗采纳,获得30
34秒前
superLmy完成签到 ,获得积分10
34秒前
科目三应助lcc采纳,获得10
36秒前
大力月光发布了新的文献求助10
36秒前
欣慰外绣发布了新的文献求助10
36秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140580
求助须知:如何正确求助?哪些是违规求助? 2791382
关于积分的说明 7798832
捐赠科研通 2447736
什么是DOI,文献DOI怎么找? 1302029
科研通“疑难数据库(出版商)”最低求助积分说明 626402
版权声明 601194