亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel informer-time-series generative adversarial networks for day-ahead scenario generation of wind power

风力发电 计算机科学 风电预测 风速 人工智能 功率(物理) 机器学习 电力系统 工程类 气象学 地理 量子力学 电气工程 物理
作者
Lin Ye,Yishu Peng,Yilin Li,Zhuo Li
出处
期刊:Applied Energy [Elsevier]
卷期号:364: 123182-123182 被引量:4
标识
DOI:10.1016/j.apenergy.2024.123182
摘要

With the rapid growth of wind power penetration, its inherent stochasticity and uncertainty will seriously affect the stable operation of power systems. How to effectively characterize the uncertainty of wind power is a great challenge for day-ahead power system dispatching, scenario generation is an important method to describe the uncertainty of wind power. Currently, most of the wind power scenarios are generated using a generative adversarial network with two-dimensional convolution as the main structure, which may make it difficult to adequately characterize the temporal features, the day-ahead mode properties, and seasonality of wind power. In this paper, we first establish an auxiliary classification time-series generation adversarial network based on error stratification, construct the numerical characteristic conditional labels that can reflect the fluctuation characteristics of day-ahead wind power and power output level, and design the temporal embedding function that captures the seasonal characteristics of wind power. On this basis, to fully extract the dynamic variation characteristics and global effective information of wind power prediction error sequences, Informer is combined with a time-series generative adversarial network, and a joint loss function incorporating supervised learning and unsupervised learning is constructed. Subsequently, the generated set of prediction error sequences is superimposed with the day-ahead predicted value of wind power to obtain the day-ahead wind power scenario set. Finally, to verify the effectiveness of the proposed method, two datasets from different geographic locations are used to comprehensively evaluate the generated day-ahead wind power scenario set in terms of three aspects: temporal correlation characteristics, fluctuation characteristics, and accuracy. The experimental results indicate that the scenario generation method proposed can improve the quality of the day-ahead wind power scenario set and has an excellent performance in describing wind power uncertainty compared with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助coco采纳,获得10
1秒前
乐乱完成签到 ,获得积分10
10秒前
了凡完成签到 ,获得积分10
21秒前
23秒前
23秒前
25秒前
天大青年发布了新的文献求助10
27秒前
柚子茶茶茶完成签到,获得积分10
27秒前
李爱国应助科研通管家采纳,获得10
29秒前
CipherSage应助科研通管家采纳,获得10
29秒前
搜集达人应助科研通管家采纳,获得10
29秒前
Hello应助科研通管家采纳,获得10
29秒前
29秒前
西红柿炒番茄应助小乐儿~采纳,获得60
32秒前
33秒前
FashionBoy应助天大青年采纳,获得10
39秒前
41秒前
完美世界应助柚子茶茶茶采纳,获得10
42秒前
CipherSage应助lisaltp采纳,获得10
43秒前
54秒前
coco发布了新的文献求助10
57秒前
1分钟前
雪中发布了新的文献求助10
1分钟前
852应助wangwang采纳,获得200
1分钟前
潮人完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
喵喵完成签到 ,获得积分10
1分钟前
等待泥猴桃完成签到,获得积分10
1分钟前
希望天下0贩的0应助ZengLY采纳,获得30
1分钟前
1分钟前
1分钟前
烟酒不离生完成签到 ,获得积分10
1分钟前
布丁大师完成签到,获得积分10
1分钟前
大火烧了毛毛虫完成签到,获得积分10
1分钟前
舒心的寻琴完成签到,获得积分10
1分钟前
2分钟前
坚定岂愈发布了新的文献求助10
2分钟前
2分钟前
2分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150492
求助须知:如何正确求助?哪些是违规求助? 2801881
关于积分的说明 7845873
捐赠科研通 2459235
什么是DOI,文献DOI怎么找? 1309099
科研通“疑难数据库(出版商)”最低求助积分说明 628656
版权声明 601727