A novel informer-time-series generative adversarial networks for day-ahead scenario generation of wind power

风力发电 计算机科学 风电预测 人工智能 功率(物理) 机器学习 电力系统 工程类 物理 量子力学 电气工程
作者
Lin Ye,Yishu Peng,Yilin Li,Zhuo Li
出处
期刊:Applied Energy [Elsevier BV]
卷期号:364: 123182-123182 被引量:8
标识
DOI:10.1016/j.apenergy.2024.123182
摘要

With the rapid growth of wind power penetration, its inherent stochasticity and uncertainty will seriously affect the stable operation of power systems. How to effectively characterize the uncertainty of wind power is a great challenge for day-ahead power system dispatching, scenario generation is an important method to describe the uncertainty of wind power. Currently, most of the wind power scenarios are generated using a generative adversarial network with two-dimensional convolution as the main structure, which may make it difficult to adequately characterize the temporal features, the day-ahead mode properties, and seasonality of wind power. In this paper, we first establish an auxiliary classification time-series generation adversarial network based on error stratification, construct the numerical characteristic conditional labels that can reflect the fluctuation characteristics of day-ahead wind power and power output level, and design the temporal embedding function that captures the seasonal characteristics of wind power. On this basis, to fully extract the dynamic variation characteristics and global effective information of wind power prediction error sequences, Informer is combined with a time-series generative adversarial network, and a joint loss function incorporating supervised learning and unsupervised learning is constructed. Subsequently, the generated set of prediction error sequences is superimposed with the day-ahead predicted value of wind power to obtain the day-ahead wind power scenario set. Finally, to verify the effectiveness of the proposed method, two datasets from different geographic locations are used to comprehensively evaluate the generated day-ahead wind power scenario set in terms of three aspects: temporal correlation characteristics, fluctuation characteristics, and accuracy. The experimental results indicate that the scenario generation method proposed can improve the quality of the day-ahead wind power scenario set and has an excellent performance in describing wind power uncertainty compared with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
文二目分完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
陈M雯完成签到 ,获得积分10
2秒前
Hello应助欢喜的跳跳糖采纳,获得10
8秒前
9秒前
fantexi113发布了新的文献求助10
21秒前
是是是WQ完成签到 ,获得积分0
22秒前
打打应助Jeffery426采纳,获得10
26秒前
樱桃儿完成签到,获得积分10
27秒前
finger完成签到,获得积分10
29秒前
倩倩完成签到 ,获得积分10
35秒前
饱满烙完成签到 ,获得积分10
37秒前
pengchen完成签到 ,获得积分10
39秒前
滕皓轩完成签到 ,获得积分20
41秒前
默笙完成签到 ,获得积分10
45秒前
墨墨完成签到,获得积分10
46秒前
47秒前
48秒前
51秒前
帅气若风发布了新的文献求助10
53秒前
Jeffery426发布了新的文献求助10
53秒前
量子星尘发布了新的文献求助10
59秒前
情怀应助帅气若风采纳,获得10
1分钟前
FashionBoy应助fantexi113采纳,获得10
1分钟前
迪鸣完成签到,获得积分0
1分钟前
xybjt完成签到 ,获得积分10
1分钟前
1分钟前
酷酷小子完成签到 ,获得积分10
1分钟前
尾状叶完成签到 ,获得积分10
1分钟前
科研佟完成签到 ,获得积分10
1分钟前
xiaofan完成签到,获得积分10
1分钟前
1分钟前
1分钟前
健忘的晓小完成签到 ,获得积分10
1分钟前
susu完成签到,获得积分10
1分钟前
1分钟前
LIJIngcan完成签到 ,获得积分10
1分钟前
白啦啦完成签到 ,获得积分10
1分钟前
王波完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503148
关于积分的说明 11111393
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870776
科研通“疑难数据库(出版商)”最低求助积分说明 802292