Learning strategies for underwater robot autonomous manipulation control

强化学习 过程(计算) 计算机科学 人工智能 理论(学习稳定性) 水下 避障 趋同(经济学) 机器人 控制(管理) 状态空间 机器人学习 控制工程 机器学习 工程类 移动机器人 海洋学 地质学 统计 数学 经济增长 经济 操作系统
作者
Hai Huang,Tao Jiang,Zongyu Zhang,Yize Sun,Hongde Qin,Xinyang Li,Xu Yang
出处
期刊:Journal of The Franklin Institute-engineering and Applied Mathematics [Elsevier]
卷期号:361 (7): 106773-106773 被引量:2
标识
DOI:10.1016/j.jfranklin.2024.106773
摘要

Autonomous manipulation operations represent the high intelligent coordination from robotic vision and control, it is also a symbol of the advances of robotic intelligence. The limitations of visual sensing and the increasingly complex experimental conditions make autonomous manipulation operations more difficult, particularly for deep reinforcement learning methods, which can enhance robotic control intelligence but require a lot of training process. Due to the high-dimensional continuous state space and continuous action space characteristics of underwater operations, this paper adopts a policy-based reinforcement learning method as the foundational approach. To address the issues of instability and low convergence efficiency in traditional policy-based reinforcement learning algorithms during the learning process, this paper proposes a novel policy learning method. This method adopts the Proximal Policy Optimization algorithm (PPOClip) and optimizes it through an actor-critic network. The aim is to improve the stability and effectiveness of convergence in the learning process. In the underwater training environment, a new reward shaping scheme has been designed to address the issue of reward sparsity during the training process. The manually crafted dense reward function is utilized as attractive and repulsive potential functions for goal manipulation and obstacle avoidance. On the highly complex underwater manipulation and training environment, transferred learning algorithm has been established to reduce the training times and compensate the differences between the simulation and experiment. Simulations and tank experiments have verified the performance of the proposed strategy learning method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咔酱完成签到,获得积分20
1秒前
善学以致用应助傅寻菱采纳,获得10
3秒前
3秒前
正直的半梅完成签到,获得积分10
5秒前
小马甲应助jiaxin采纳,获得10
7秒前
7秒前
小月986完成签到,获得积分10
8秒前
欢呼的寻双完成签到,获得积分20
8秒前
9秒前
9秒前
9秒前
10秒前
huang完成签到,获得积分10
11秒前
彭于晏应助璀璨c采纳,获得10
11秒前
茶博士完成签到,获得积分10
13秒前
甜甜玫瑰应助史克珍香采纳,获得20
13秒前
Orange应助汪汪别吃了采纳,获得10
13秒前
qwf发布了新的文献求助10
14秒前
XY12138完成签到,获得积分10
14秒前
桐桐应助勤奋青寒采纳,获得30
14秒前
8acem1ker发布了新的文献求助30
15秒前
mhl11应助liyingyan采纳,获得10
15秒前
yar应助可爱冲击采纳,获得10
15秒前
万能图书馆应助毛祺隆采纳,获得10
16秒前
XY12138发布了新的文献求助30
16秒前
852应助小语采纳,获得10
17秒前
18秒前
18秒前
开朗孤云发布了新的文献求助20
18秒前
沉默的婴完成签到 ,获得积分10
19秒前
爆米花应助YCW采纳,获得10
19秒前
19秒前
激昂的亦竹完成签到 ,获得积分10
19秒前
20秒前
棒棒橙关注了科研通微信公众号
20秒前
毛毛弟完成签到 ,获得积分10
21秒前
charlotte发布了新的文献求助10
23秒前
23秒前
24秒前
xxy完成签到,获得积分10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293020
求助须知:如何正确求助?哪些是违规求助? 2929214
关于积分的说明 8440703
捐赠科研通 2601296
什么是DOI,文献DOI怎么找? 1419717
科研通“疑难数据库(出版商)”最低求助积分说明 660370
邀请新用户注册赠送积分活动 643029