Learning strategies for underwater robot autonomous manipulation control

强化学习 过程(计算) 计算机科学 人工智能 理论(学习稳定性) 水下 避障 趋同(经济学) 机器人 控制(管理) 状态空间 机器人学习 控制工程 机器学习 工程类 移动机器人 地质学 操作系统 海洋学 经济 统计 经济增长 数学
作者
Hai Huang,Tao Jiang,Zongyu Zhang,Yize Sun,Hongde Qin,Xinyang Li,Xu Yang
出处
期刊:Journal of The Franklin Institute-engineering and Applied Mathematics [Elsevier]
卷期号:361 (7): 106773-106773 被引量:2
标识
DOI:10.1016/j.jfranklin.2024.106773
摘要

Autonomous manipulation operations represent the high intelligent coordination from robotic vision and control, it is also a symbol of the advances of robotic intelligence. The limitations of visual sensing and the increasingly complex experimental conditions make autonomous manipulation operations more difficult, particularly for deep reinforcement learning methods, which can enhance robotic control intelligence but require a lot of training process. Due to the high-dimensional continuous state space and continuous action space characteristics of underwater operations, this paper adopts a policy-based reinforcement learning method as the foundational approach. To address the issues of instability and low convergence efficiency in traditional policy-based reinforcement learning algorithms during the learning process, this paper proposes a novel policy learning method. This method adopts the Proximal Policy Optimization algorithm (PPOClip) and optimizes it through an actor-critic network. The aim is to improve the stability and effectiveness of convergence in the learning process. In the underwater training environment, a new reward shaping scheme has been designed to address the issue of reward sparsity during the training process. The manually crafted dense reward function is utilized as attractive and repulsive potential functions for goal manipulation and obstacle avoidance. On the highly complex underwater manipulation and training environment, transferred learning algorithm has been established to reduce the training times and compensate the differences between the simulation and experiment. Simulations and tank experiments have verified the performance of the proposed strategy learning method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
susu完成签到,获得积分10
刚刚
刚刚
刚刚
小蘑菇应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
一一应助科研通管家采纳,获得10
2秒前
wanci应助蓝蓝蓝采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
一一应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Priority应助科研通管家采纳,获得30
2秒前
Priority应助科研通管家采纳,获得30
2秒前
2秒前
一一应助科研通管家采纳,获得10
3秒前
liao应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
xxfsx应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
俭朴尔白应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
3秒前
xxfsx应助科研通管家采纳,获得10
3秒前
飞龙在天完成签到 ,获得积分10
3秒前
xxfsx应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
liao应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
一一应助科研通管家采纳,获得10
4秒前
xxfsx应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
一一应助科研通管家采纳,获得10
4秒前
4秒前
GQ完成签到,获得积分10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462397
求助须知:如何正确求助?哪些是违规求助? 4567107
关于积分的说明 14308810
捐赠科研通 4492907
什么是DOI,文献DOI怎么找? 2461315
邀请新用户注册赠送积分活动 1450358
关于科研通互助平台的介绍 1425794