Rethinking Interactive Image Segmentation with Low Latency, High Quality, and Diverse Prompts

计算机科学 分割 计算机视觉 延迟(音频) 人工智能 质量(理念) 多媒体 电信 认识论 哲学
作者
Qin Liu,Jaemin Cho,Mohit Bansal,Marc Niethammer
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.00741
摘要

The goal of interactive image segmentation is to delineate specific regions within an image via visual or language prompts. Low-latency and high-quality interactive segmentation with diverse prompts remain challenging for existing specialist and generalist models. Specialist models, with their limited prompts and task-specific designs, experience high latency because the image must be recomputed every time the prompt is updated, due to the joint encoding of image and visual prompts. Generalist models, exemplified by the Segment Anything Model (SAM), have recently excelled in prompt diversity and efficiency, lifting image segmentation to the foundation model era. However, for high-quality segmentations, SAM still lags behind state-of-the-art specialist models despite SAM being trained with x100 more segmentation masks. In this work, we delve deep into the architectural differences between the two types of models. We observe that dense representation and fusion of visual prompts are the key design choices contributing to the high segmentation quality of specialist models. In light of this, we reintroduce this dense design into the generalist models, to facilitate the development of generalist models with high segmentation quality. To densely represent diverse visual prompts, we propose to use a dense map to capture five types: clicks, boxes, polygons, scribbles, and masks. Thus, we propose SegNext, a next-generation interactive segmentation approach offering low latency, high quality, and diverse prompt support. Our method outperforms current state-of-the-art methods on HQSeg-44K and DAVIS, both quantitatively and qualitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
scscsd完成签到,获得积分10
刚刚
jason发布了新的文献求助10
1秒前
对啊发布了新的文献求助10
1秒前
1秒前
1秒前
Apr9810h完成签到 ,获得积分10
1秒前
2秒前
科研通AI2S应助尛瞐慶成采纳,获得10
2秒前
纯真硬币发布了新的文献求助10
2秒前
李爱国应助小龙采纳,获得10
3秒前
3秒前
大模型应助滕达采纳,获得10
4秒前
4秒前
光亮的太阳完成签到,获得积分10
4秒前
5秒前
酷炫小伙完成签到,获得积分10
5秒前
Akim应助zcz采纳,获得10
5秒前
5秒前
上官若男应助Shandongdaxiu采纳,获得10
6秒前
调研昵称发布了新的文献求助10
6秒前
cc应助图图搞科研采纳,获得10
6秒前
xsx完成签到,获得积分10
7秒前
慕青应助对啊采纳,获得10
7秒前
wanci应助开放的巨人采纳,获得30
7秒前
lucyliu发布了新的文献求助20
7秒前
wait发布了新的文献求助10
8秒前
优美芷蝶完成签到,获得积分10
8秒前
Lvy完成签到,获得积分10
8秒前
呵呵哒完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
温暖霸发布了新的文献求助10
9秒前
英俊的铭应助jxwe采纳,获得10
11秒前
11秒前
yangyang完成签到,获得积分10
11秒前
11秒前
优美芷蝶发布了新的文献求助10
11秒前
11秒前
隐形曼青应助清寒采纳,获得10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143088
求助须知:如何正确求助?哪些是违规求助? 2794180
关于积分的说明 7810221
捐赠科研通 2450424
什么是DOI,文献DOI怎么找? 1303824
科研通“疑难数据库(出版商)”最低求助积分说明 627066
版权声明 601384