Improved differential evolution algorithm based on cooperative multi-population

计算机科学 可扩展性 水准点(测量) 差异进化 稳健性(进化) 局部最优 渡线 操作员(生物学) 趋同(经济学) 理论(学习稳定性) 人口 进化算法 算法 数学优化 机器学习 基因 转录因子 数据库 社会学 人口学 抑制因子 生物化学 经济 化学 经济增长 地理 数学 大地测量学
作者
Y. H. Shen,Jing Wu,Minfu Ma,Xiaofeng Du,Hao Wu,Xianlong Fei,Datian Niu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108149-108149 被引量:20
标识
DOI:10.1016/j.engappai.2024.108149
摘要

This paper introduces an improved differential evolution algorithm based on cooperative multi-population (CMp-DE for short), which combines diverse population collaboration mechanisms and catalytic factors into an improved differential evolution framework. By harnessing various population collaboration mechanisms, the algorithm enhances the diversity of individuals within populations during initial iterations and reduces it during later iterations, thereby harmonizing the algorithm's exploratory and exploitative capabilities. Furthermore, a novel mutation operator is proposed that divides the iterative process into exploration and exploitation phases, thereby augmenting the algorithm's global exploration prowess. Lastly, a catalytic operator is introduced to generate new individuals near post-crossover individuals based on a specified rule, which enhances the algorithm's ability to escape local optima and increasing stability. The proposed CMp-DE is benchmarked against the CEC2017 benchmark test functions and compared against 13 algorithms, including five differential evolution algorithms and their variants, as well as eight state-of-the-art metaheuristic optimization algorithms. This evaluation assesses the CMp-DE's solution accuracy, convergence, stability, and scalability. Finally, the applicability of CMp-DE is validated by addressing six practical optimization problems. The experimental results show that CMp-DE surpasses other algorithms in terms of both convergence accuracy and robustness. Moreover, integrating a catalytic operator with other optimization algorithms notably boosts performance in convergence accuracy and stability. The inclusion of the catalytic operator has significantly enhanced the performance of algorithms compared to their performance before its addition. This underscores the potential of the catalytic operator in improving the performance of various algorithms, particularly in terms of convergence accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助科研通管家采纳,获得10
刚刚
pipiap发布了新的文献求助10
刚刚
酷波er应助科研通管家采纳,获得20
刚刚
刚刚
大模型应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
大模型应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
刚刚
Owen应助科研通管家采纳,获得10
刚刚
一灯大师发布了新的文献求助30
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
1秒前
1秒前
Lucas应助乔乔兔采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
刻苦的白梅完成签到,获得积分10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
嗯哼完成签到,获得积分0
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095