Improved differential evolution algorithm based on cooperative multi-population

计算机科学 可扩展性 水准点(测量) 差异进化 稳健性(进化) 局部最优 渡线 操作员(生物学) 趋同(经济学) 理论(学习稳定性) 人口 进化算法 算法 数学优化 机器学习 生物化学 地理 基因 经济 转录因子 经济增长 数据库 抑制因子 大地测量学 化学 社会学 人口学 数学
作者
Y. H. Shen,Jing Wu,Minfu Ma,Xiaofeng Du,Hao Wu,Xianlong Fei,Datian Niu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108149-108149 被引量:16
标识
DOI:10.1016/j.engappai.2024.108149
摘要

This paper introduces an improved differential evolution algorithm based on cooperative multi-population (CMp-DE for short), which combines diverse population collaboration mechanisms and catalytic factors into an improved differential evolution framework. By harnessing various population collaboration mechanisms, the algorithm enhances the diversity of individuals within populations during initial iterations and reduces it during later iterations, thereby harmonizing the algorithm's exploratory and exploitative capabilities. Furthermore, a novel mutation operator is proposed that divides the iterative process into exploration and exploitation phases, thereby augmenting the algorithm's global exploration prowess. Lastly, a catalytic operator is introduced to generate new individuals near post-crossover individuals based on a specified rule, which enhances the algorithm's ability to escape local optima and increasing stability. The proposed CMp-DE is benchmarked against the CEC2017 benchmark test functions and compared against 13 algorithms, including five differential evolution algorithms and their variants, as well as eight state-of-the-art metaheuristic optimization algorithms. This evaluation assesses the CMp-DE's solution accuracy, convergence, stability, and scalability. Finally, the applicability of CMp-DE is validated by addressing six practical optimization problems. The experimental results show that CMp-DE surpasses other algorithms in terms of both convergence accuracy and robustness. Moreover, integrating a catalytic operator with other optimization algorithms notably boosts performance in convergence accuracy and stability. The inclusion of the catalytic operator has significantly enhanced the performance of algorithms compared to their performance before its addition. This underscores the potential of the catalytic operator in improving the performance of various algorithms, particularly in terms of convergence accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
等我吃胖完成签到,获得积分10
1秒前
1秒前
二马三乡完成签到 ,获得积分10
2秒前
2秒前
啦啦啦发布了新的文献求助30
5秒前
大大小发布了新的文献求助10
5秒前
peng完成签到 ,获得积分10
7秒前
追寻的问玉完成签到 ,获得积分10
7秒前
哎呀呀完成签到,获得积分10
8秒前
六氟合铂酸氙完成签到 ,获得积分10
8秒前
Gary完成签到,获得积分10
8秒前
10秒前
天马行空完成签到,获得积分10
10秒前
victhr完成签到,获得积分10
11秒前
沉默傲芙完成签到,获得积分10
11秒前
伊yan完成签到 ,获得积分10
12秒前
manfullmoon完成签到,获得积分10
12秒前
12秒前
大大小完成签到,获得积分10
14秒前
Shengwj完成签到,获得积分10
14秒前
LLZ完成签到,获得积分10
15秒前
壁虎君完成签到,获得积分10
16秒前
wu发布了新的文献求助10
16秒前
隐形霸完成签到,获得积分10
16秒前
Cry_Man完成签到 ,获得积分10
17秒前
MIST完成签到,获得积分10
17秒前
LLZ发布了新的文献求助30
20秒前
Rick完成签到,获得积分10
20秒前
陈富贵完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
zyz完成签到,获得积分10
22秒前
mochi完成签到,获得积分10
22秒前
nnnnn完成签到,获得积分10
22秒前
wenjian完成签到,获得积分10
23秒前
blackkk发布了新的文献求助10
24秒前
研友_VZG7GZ应助Rick采纳,获得10
24秒前
光亮萤完成签到,获得积分10
25秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953546
求助须知:如何正确求助?哪些是违规求助? 3499037
关于积分的说明 11093666
捐赠科研通 3229646
什么是DOI,文献DOI怎么找? 1785694
邀请新用户注册赠送积分活动 869464
科研通“疑难数据库(出版商)”最低求助积分说明 801470