Improved differential evolution algorithm based on cooperative multi-population

计算机科学 可扩展性 水准点(测量) 差异进化 稳健性(进化) 局部最优 渡线 操作员(生物学) 趋同(经济学) 理论(学习稳定性) 人口 进化算法 算法 数学优化 机器学习 基因 转录因子 数据库 社会学 人口学 抑制因子 生物化学 经济 化学 经济增长 地理 数学 大地测量学
作者
Y. H. Shen,Jing Wu,Minfu Ma,Xiaofeng Du,Hao Wu,Xianlong Fei,Datian Niu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108149-108149 被引量:20
标识
DOI:10.1016/j.engappai.2024.108149
摘要

This paper introduces an improved differential evolution algorithm based on cooperative multi-population (CMp-DE for short), which combines diverse population collaboration mechanisms and catalytic factors into an improved differential evolution framework. By harnessing various population collaboration mechanisms, the algorithm enhances the diversity of individuals within populations during initial iterations and reduces it during later iterations, thereby harmonizing the algorithm's exploratory and exploitative capabilities. Furthermore, a novel mutation operator is proposed that divides the iterative process into exploration and exploitation phases, thereby augmenting the algorithm's global exploration prowess. Lastly, a catalytic operator is introduced to generate new individuals near post-crossover individuals based on a specified rule, which enhances the algorithm's ability to escape local optima and increasing stability. The proposed CMp-DE is benchmarked against the CEC2017 benchmark test functions and compared against 13 algorithms, including five differential evolution algorithms and their variants, as well as eight state-of-the-art metaheuristic optimization algorithms. This evaluation assesses the CMp-DE's solution accuracy, convergence, stability, and scalability. Finally, the applicability of CMp-DE is validated by addressing six practical optimization problems. The experimental results show that CMp-DE surpasses other algorithms in terms of both convergence accuracy and robustness. Moreover, integrating a catalytic operator with other optimization algorithms notably boosts performance in convergence accuracy and stability. The inclusion of the catalytic operator has significantly enhanced the performance of algorithms compared to their performance before its addition. This underscores the potential of the catalytic operator in improving the performance of various algorithms, particularly in terms of convergence accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuangbaobao发布了新的文献求助10
1秒前
郭6666发布了新的文献求助10
2秒前
完美世界应助留胡子的火采纳,获得10
7秒前
脑洞疼应助郭6666采纳,获得10
7秒前
公冶愚志完成签到,获得积分10
10秒前
威武的皮卡丘完成签到,获得积分10
16秒前
16秒前
16秒前
大龙哥886应助ri_290采纳,获得10
17秒前
sevenhill应助Devastating采纳,获得10
19秒前
19秒前
今后应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
Orange应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得30
20秒前
拼搏应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得20
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
小新应助科研通管家采纳,获得10
20秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
鬼切关注了科研通微信公众号
20秒前
天天快乐应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
无极微光应助科研通管家采纳,获得20
20秒前
scaler完成签到,获得积分10
21秒前
22秒前
xinbowey发布了新的文献求助10
22秒前
xiao完成签到 ,获得积分10
24秒前
25秒前
默默早晨完成签到 ,获得积分10
26秒前
yang发布了新的文献求助10
28秒前
科研通AI6应助Jodie采纳,获得10
30秒前
二次元喵酱完成签到,获得积分10
30秒前
xinbowey完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555