亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

IPCC Climate Zones (from the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories)

温室气体 环境科学 气候变化 气候学 地质学 海洋学
作者
Matthew Lewis
出处
期刊:CERN European Organization for Nuclear Research - Zenodo
标识
DOI:10.5281/zenodo.7303807
摘要

Description These data (re)create spatial data for the 2019 IPCC Climate Zones, shown in Figure 3A.5.1 of Chapter 3: Consistent Representation of Lands in Volume 4: Agriculture, Forestry and Other Land Use of the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. I recreated these data because I could not readily identify the data in a spatial format online, a problem which has previously been noted by ESDAC, who produced a spatial version of Figure 3A.5.1 from the original 2006 guidelines. Resolution: 0.5 arc degree CRS: lon/lat WGS 84 If you use these data please ensure you also cite the IPCC - Calvo Buendia, E et al. (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. IPCC, Switzerland. Methods The data were derived using the classification scheme shown in Figure 3A.5.2 based on the gridded Climate Research Unit (CRU) Time Series (TS) monthly climate data (Harris et al., 2014) for the period from 1985 to 2015 following the methods described in Annex 3A.5 Default climate and soil classifications of the above Chapter. All data were processed in R version 4.2.1, with the packages elevatr (v0.4.2), lubridate (v1.8.0), magrittr (v2.0.3), and terra (v1.6-7) attached. The full session info is included as a .txt file. As these methods are not exhaustively described in the Annex, the following assumptions were made: CRU TS3.25 was used as the most recently published data (published on 2017-09-22) that could have been incorporated into the Refinement. Other possibilities include CRU TS3.24 (which are the first data to include 2015), or CRU TS4.00 or CRU TS4.01 (both of which were published in parallel to 3.24 and 3.25). These data were all investigated, and CRU TS3.25 produced results that were the most visually similar to the published Figure 3A.5.1 (though non-identical). As the methods did not mention a preferred elevation data source, the elevatr R package was used to obtain data at zoom level 2 (approx resolution of 0.15 arc degree), that was then resampled to match the 0.5-degree resolution of the CRU data. These data originally come from the ETOPO1 global relief model. Known discrepancies The distribution of Tropical Wet and Tropical Moist in South America does not exactly match the original data. There are small discrepancies in Tropical Montane classifications (likely arising from the use of a different elevation layer). These are most noticeable in, but not restricted to, Africa. The classification of Boreal Dry, Polar Dry, and Polar Moist in northern Russia and (to a lesser extent) in northern Canada does not exactly match the original data. There are a small number of Cool Temperate Dry pixels in the UK, and Warm Temperate Dry pixels around Brittany which do not occur in the original data. Disclaimer I am not affiliated with the IPCC in any way, I just needed spatial data of the Climate Zones, and could not readily identify any online. This is a problem which has previously been noted by ESDAC, who produced a spatial version of Figure 3A.5.1 from the original 2006 guidelines. File description README.html - ~this description file. IPCC_Climate_Zones_ts_3.25.tif - the output Climate Zones map at 0.5-arc degree resolution based on the CRU TS3.25 data. IPCC_Climate_Zones_colour_map.clr - a colour map file to render the output map with the same colours as in the IPCC 2019 Refinement figure. IPCC_Climate_Zones_ts_3.25.png - an image file of the output Climate Zones map. ipcc_climate_zones_2019.R - the script used to produce these data. session_info.txt - the R session info.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感性的靖仇完成签到,获得积分20
2秒前
6秒前
Nikki发布了新的文献求助10
10秒前
科研通AI6应助Nikki采纳,获得10
18秒前
59秒前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得150
1分钟前
1分钟前
烨枫晨曦完成签到,获得积分10
2分钟前
2分钟前
专业中药人完成签到,获得积分10
2分钟前
2分钟前
3分钟前
完美发布了新的文献求助30
3分钟前
木可发布了新的文献求助10
3分钟前
完美完成签到,获得积分20
3分钟前
3分钟前
浮游应助木可采纳,获得10
3分钟前
lvzhou完成签到,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
木可完成签到 ,获得积分20
4分钟前
笨蛋美女完成签到 ,获得积分10
4分钟前
5分钟前
liuliu发布了新的文献求助10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
靓丽奇迹完成签到 ,获得积分10
6分钟前
liuliu发布了新的文献求助10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357135
求助须知:如何正确求助?哪些是违规求助? 4488655
关于积分的说明 13972423
捐赠科研通 4389809
什么是DOI,文献DOI怎么找? 2411723
邀请新用户注册赠送积分活动 1404285
关于科研通互助平台的介绍 1378445