IPCC Climate Zones (from the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories)

温室气体 环境科学 气候变化 气候学 地质学 海洋学
作者
Matthew Lewis
出处
期刊:CERN European Organization for Nuclear Research - Zenodo
标识
DOI:10.5281/zenodo.7303807
摘要

Description These data (re)create spatial data for the 2019 IPCC Climate Zones, shown in Figure 3A.5.1 of Chapter 3: Consistent Representation of Lands in Volume 4: Agriculture, Forestry and Other Land Use of the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. I recreated these data because I could not readily identify the data in a spatial format online, a problem which has previously been noted by ESDAC, who produced a spatial version of Figure 3A.5.1 from the original 2006 guidelines. Resolution: 0.5 arc degree CRS: lon/lat WGS 84 If you use these data please ensure you also cite the IPCC - Calvo Buendia, E et al. (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. IPCC, Switzerland. Methods The data were derived using the classification scheme shown in Figure 3A.5.2 based on the gridded Climate Research Unit (CRU) Time Series (TS) monthly climate data (Harris et al., 2014) for the period from 1985 to 2015 following the methods described in Annex 3A.5 Default climate and soil classifications of the above Chapter. All data were processed in R version 4.2.1, with the packages elevatr (v0.4.2), lubridate (v1.8.0), magrittr (v2.0.3), and terra (v1.6-7) attached. The full session info is included as a .txt file. As these methods are not exhaustively described in the Annex, the following assumptions were made: CRU TS3.25 was used as the most recently published data (published on 2017-09-22) that could have been incorporated into the Refinement. Other possibilities include CRU TS3.24 (which are the first data to include 2015), or CRU TS4.00 or CRU TS4.01 (both of which were published in parallel to 3.24 and 3.25). These data were all investigated, and CRU TS3.25 produced results that were the most visually similar to the published Figure 3A.5.1 (though non-identical). As the methods did not mention a preferred elevation data source, the elevatr R package was used to obtain data at zoom level 2 (approx resolution of 0.15 arc degree), that was then resampled to match the 0.5-degree resolution of the CRU data. These data originally come from the ETOPO1 global relief model. Known discrepancies The distribution of Tropical Wet and Tropical Moist in South America does not exactly match the original data. There are small discrepancies in Tropical Montane classifications (likely arising from the use of a different elevation layer). These are most noticeable in, but not restricted to, Africa. The classification of Boreal Dry, Polar Dry, and Polar Moist in northern Russia and (to a lesser extent) in northern Canada does not exactly match the original data. There are a small number of Cool Temperate Dry pixels in the UK, and Warm Temperate Dry pixels around Brittany which do not occur in the original data. Disclaimer I am not affiliated with the IPCC in any way, I just needed spatial data of the Climate Zones, and could not readily identify any online. This is a problem which has previously been noted by ESDAC, who produced a spatial version of Figure 3A.5.1 from the original 2006 guidelines. File description README.html - ~this description file. IPCC_Climate_Zones_ts_3.25.tif - the output Climate Zones map at 0.5-arc degree resolution based on the CRU TS3.25 data. IPCC_Climate_Zones_colour_map.clr - a colour map file to render the output map with the same colours as in the IPCC 2019 Refinement figure. IPCC_Climate_Zones_ts_3.25.png - an image file of the output Climate Zones map. ipcc_climate_zones_2019.R - the script used to produce these data. session_info.txt - the R session info.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
小富婆完成签到,获得积分10
3秒前
姚学宇发布了新的文献求助10
3秒前
CA完成签到,获得积分10
5秒前
正己化人应助小富婆采纳,获得10
6秒前
英姑应助姚学宇采纳,获得10
9秒前
草本心语发布了新的文献求助10
10秒前
Chi_bio完成签到,获得积分10
10秒前
科研通AI6应助江湖樊南生采纳,获得10
11秒前
xgrr完成签到 ,获得积分10
12秒前
就好完成签到 ,获得积分10
12秒前
12秒前
科研通AI6应助标致小甜瓜采纳,获得30
12秒前
77完成签到 ,获得积分10
15秒前
zpl发布了新的文献求助10
15秒前
小贤完成签到,获得积分20
15秒前
嗜酸性粒细胞完成签到,获得积分10
22秒前
zyf完成签到,获得积分10
22秒前
23秒前
科研通AI6应助zpl采纳,获得10
24秒前
江映雨完成签到,获得积分10
24秒前
liangguangyuan完成签到 ,获得积分10
25秒前
陈政豪完成签到,获得积分10
25秒前
27秒前
27秒前
无花果应助江湖樊南生采纳,获得10
29秒前
gkkkk发布了新的文献求助10
29秒前
陈政豪发布了新的文献求助10
30秒前
李健的粉丝团团长应助echo采纳,获得10
32秒前
君为臣纲发布了新的文献求助10
32秒前
33秒前
33秒前
1280065188发布了新的文献求助10
34秒前
soda完成签到,获得积分10
37秒前
钻石棋发布了新的文献求助10
38秒前
小雨完成签到,获得积分10
38秒前
香蕉觅云应助哈哈哈采纳,获得10
39秒前
谨慎长颈鹿完成签到,获得积分10
39秒前
酸奶烤着吃完成签到,获得积分10
41秒前
hehe完成签到 ,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560221
求助须知:如何正确求助?哪些是违规求助? 4645390
关于积分的说明 14675061
捐赠科研通 4586534
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490087
关于科研通互助平台的介绍 1460900