An Improved YOLOv8 Algorithm for Rail Surface Defect Detection

计算机科学 算法
作者
Yan Wang,Kehua Zhang,Ling Wang,Lintong Wu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 44984-44997 被引量:8
标识
DOI:10.1109/access.2024.3380009
摘要

To tackle the issues raised by detecting small targets and densely occluded targets in railroad track surface defect detection, we present an algorithm for detecting defects on railroad tracks based on the YOLOv8 model. Firstly, we enhance the model's attention towards small and medium-sized targets by substituting replacing the original convolution with the SPD-Conv building block in the backbone network of YOLOv8n, while preserving the original network structure. Secondly, we integrate the integrating the EMA attention mechanism module into the neck component, allowing the model to leverage information from different layers of features and improve feature representation capabilities. Lastly, we substitute the original C-IOU with the Focal-SIoU loss function in YOLOv8., which adjusts the weights of positive and negative samples to penalize difficult-to-classify samples more heavily. This enhancement improves the model's capability to accurately recognize challenging samples and ensures that the network allocates greater attention to each target instance, resulting in improved performance and effectiveness of the model. The experimental results reveal notable advancements in precision, recall, and average accuracy attained by our enhanced algorithm. Compared to the original YOLOv8n model, our enhanced algorithm demonstrates remarkable precision, recall, and average accuracy of 93.9%, 93.7%, and 94.1%, respectively. These improvements amount to 3.6%, 5.0%, and 5.7%, respectively. Notably, these enhancements are accomplished while maintaining the dimensions of the model and the parameter count. During the identification of defects on railroad track surfaces, our improved algorithm surpasses other widely used algorithms in terms of performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助甘乐采纳,获得10
刚刚
烟花应助猪猪hero采纳,获得10
刚刚
田様应助123采纳,获得10
1秒前
2秒前
刘旭完成签到,获得积分10
4秒前
Toyuki完成签到 ,获得积分10
5秒前
JamesPei应助aa采纳,获得10
7秒前
mumahuangshu完成签到,获得积分20
8秒前
8秒前
asdfghjkl完成签到,获得积分10
9秒前
lbw完成签到 ,获得积分10
10秒前
英姑应助灯光师采纳,获得10
12秒前
liuqc发布了新的文献求助10
12秒前
俏皮的一德完成签到,获得积分10
13秒前
云蓝完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助20
15秒前
15秒前
科研小白121212完成签到,获得积分20
15秒前
17秒前
19秒前
猪猪hero发布了新的文献求助10
19秒前
20秒前
喝酸奶高手完成签到,获得积分20
20秒前
星辰大海应助灯光师采纳,获得10
20秒前
20秒前
21秒前
22秒前
caijie发布了新的文献求助10
22秒前
23秒前
浮游应助Son4904采纳,获得10
24秒前
lyn完成签到,获得积分20
24秒前
Jasper应助wp048006采纳,获得10
25秒前
完美怀亦发布了新的文献求助10
27秒前
FashionBoy应助研究牲采纳,获得10
27秒前
27秒前
yanzinie发布了新的文献求助10
28秒前
岁月流年完成签到 ,获得积分10
28秒前
秦善斓完成签到,获得积分10
30秒前
慕青应助小秦采纳,获得10
30秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Technical Report No. 22 (Revised 2025): Process Simulation for Aseptically Filled Products 500
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5015379
求助须知:如何正确求助?哪些是违规求助? 4255860
关于积分的说明 13262729
捐赠科研通 4059639
什么是DOI,文献DOI怎么找? 2220372
邀请新用户注册赠送积分活动 1229671
关于科研通互助平台的介绍 1152286