An Improved YOLOv8 Algorithm for Rail Surface Defect Detection

计算机科学 算法
作者
Yan Wang,Kehua Zhang,Ling Wang,Lintong Wu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 44984-44997 被引量:8
标识
DOI:10.1109/access.2024.3380009
摘要

To tackle the issues raised by detecting small targets and densely occluded targets in railroad track surface defect detection, we present an algorithm for detecting defects on railroad tracks based on the YOLOv8 model. Firstly, we enhance the model's attention towards small and medium-sized targets by substituting replacing the original convolution with the SPD-Conv building block in the backbone network of YOLOv8n, while preserving the original network structure. Secondly, we integrate the integrating the EMA attention mechanism module into the neck component, allowing the model to leverage information from different layers of features and improve feature representation capabilities. Lastly, we substitute the original C-IOU with the Focal-SIoU loss function in YOLOv8., which adjusts the weights of positive and negative samples to penalize difficult-to-classify samples more heavily. This enhancement improves the model's capability to accurately recognize challenging samples and ensures that the network allocates greater attention to each target instance, resulting in improved performance and effectiveness of the model. The experimental results reveal notable advancements in precision, recall, and average accuracy attained by our enhanced algorithm. Compared to the original YOLOv8n model, our enhanced algorithm demonstrates remarkable precision, recall, and average accuracy of 93.9%, 93.7%, and 94.1%, respectively. These improvements amount to 3.6%, 5.0%, and 5.7%, respectively. Notably, these enhancements are accomplished while maintaining the dimensions of the model and the parameter count. During the identification of defects on railroad track surfaces, our improved algorithm surpasses other widely used algorithms in terms of performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
温柔若颜发布了新的文献求助10
1秒前
康康发布了新的文献求助10
2秒前
3秒前
3秒前
科研鸟完成签到 ,获得积分10
3秒前
慕青应助魔幻问薇采纳,获得10
4秒前
CabbageLLL完成签到,获得积分10
5秒前
5秒前
SciGPT应助999采纳,获得10
5秒前
都是发布了新的文献求助10
6秒前
Lucas应助爱笑的寻真采纳,获得10
9秒前
八号向日葵完成签到 ,获得积分10
9秒前
哈哈嘻嘻完成签到,获得积分10
10秒前
13秒前
13秒前
14秒前
冯1完成签到,获得积分10
15秒前
诚心淇发布了新的文献求助10
18秒前
tommorw完成签到 ,获得积分10
18秒前
冯1发布了新的文献求助10
18秒前
21秒前
孟令涛完成签到,获得积分20
22秒前
杨tong发布了新的文献求助10
22秒前
23秒前
jacshhhh完成签到,获得积分10
23秒前
诚心淇完成签到,获得积分10
26秒前
孟令涛发布了新的文献求助10
26秒前
26秒前
大模型应助怕黑的丝袜采纳,获得10
28秒前
ZSQ发布了新的文献求助10
29秒前
32秒前
33秒前
上官若男应助ZSQ采纳,获得10
33秒前
33秒前
SciGPT应助欣喜战斗机采纳,获得10
34秒前
危机完成签到,获得积分10
35秒前
思源应助asdfasdfj采纳,获得30
35秒前
38秒前
38秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808900
关于积分的说明 7879102
捐赠科研通 2467351
什么是DOI,文献DOI怎么找? 1313394
科研通“疑难数据库(出版商)”最低求助积分说明 630395
版权声明 601919