An Improved YOLOv8 Algorithm for Rail Surface Defect Detection

计算机科学 算法
作者
Yan Wang,Kehua Zhang,Ling Wang,Lintong Wu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 44984-44997 被引量:8
标识
DOI:10.1109/access.2024.3380009
摘要

To tackle the issues raised by detecting small targets and densely occluded targets in railroad track surface defect detection, we present an algorithm for detecting defects on railroad tracks based on the YOLOv8 model. Firstly, we enhance the model's attention towards small and medium-sized targets by substituting replacing the original convolution with the SPD-Conv building block in the backbone network of YOLOv8n, while preserving the original network structure. Secondly, we integrate the integrating the EMA attention mechanism module into the neck component, allowing the model to leverage information from different layers of features and improve feature representation capabilities. Lastly, we substitute the original C-IOU with the Focal-SIoU loss function in YOLOv8., which adjusts the weights of positive and negative samples to penalize difficult-to-classify samples more heavily. This enhancement improves the model's capability to accurately recognize challenging samples and ensures that the network allocates greater attention to each target instance, resulting in improved performance and effectiveness of the model. The experimental results reveal notable advancements in precision, recall, and average accuracy attained by our enhanced algorithm. Compared to the original YOLOv8n model, our enhanced algorithm demonstrates remarkable precision, recall, and average accuracy of 93.9%, 93.7%, and 94.1%, respectively. These improvements amount to 3.6%, 5.0%, and 5.7%, respectively. Notably, these enhancements are accomplished while maintaining the dimensions of the model and the parameter count. During the identification of defects on railroad track surfaces, our improved algorithm surpasses other widely used algorithms in terms of performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美丽的之双完成签到,获得积分10
1秒前
阿会完成签到,获得积分10
1秒前
wqm完成签到,获得积分10
2秒前
戏言121发布了新的文献求助10
3秒前
3秒前
4秒前
优雅的流沙完成签到 ,获得积分10
5秒前
猫的海完成签到,获得积分10
5秒前
5秒前
Eason Liu完成签到,获得积分0
6秒前
Wendy1204完成签到,获得积分20
6秒前
Hello应助654采纳,获得10
6秒前
咩咩羊完成签到,获得积分10
6秒前
10秒前
lianqing完成签到,获得积分10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
11秒前
RC_Wang应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
hh应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得30
11秒前
11秒前
Leif应助科研通管家采纳,获得20
11秒前
11秒前
12秒前
12秒前
13秒前
13秒前
忘羡222发布了新的文献求助20
14秒前
丰富猕猴桃完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
JamesPei应助咿咿呀呀采纳,获得10
15秒前
www完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824